Have a personal or library account? Click to login
Effect of Chemically-Induced Diabetes Mellitus on Phenotypic Variability of the Enteric Neurons in the Descending Colon in the Pig Cover

Effect of Chemically-Induced Diabetes Mellitus on Phenotypic Variability of the Enteric Neurons in the Descending Colon in the Pig

Open Access
|Oct 2021

References

  1. Arciszewski M. B., Ekblad E. (2005). Effects of vasoactive intestinal peptide and galanin on survival of cultured porcine myenteric neurons. Regul. Pept., 125: 185–192.10.1016/j.regpep.2004.08.036
  2. Barada K. A., Saadé N. E., Atweh S. F., Khoury C. I., Nassar C. F. (2000). Calcitonin generelated peptide regulates amino acid absorption across rat jejunum. Regul. Pept., 90: 39–45.10.1016/S0167-0115(00)00103-8
  3. Barbiers M., Timmermans J. P., Scheuermann D. W., Adriaensen D., Mayer B., De Groodt Lasseel M. H. A. (1994). Nitric oxide synthase-containing neurons in the pig large intestine: Topography, morphology, and viscerofugal projections. Microsc. Res. Tech., 29: 72–78.10.1002/jemt.1070290203
  4. Belai A., Burnstock G. (1990). Changes in adrenergic and peptidergic nerves in the submucous plexus of streptozocin-diabetic rat ileum. Gastroenterology, 98: 1427–1436.10.1016/0016-5085(90)91072-E
  5. Belai A., Lincoln J., Milner P., Crowe R., Loesch A., Burnstock G. (1985). Enteric nerves in diabetic rats: increase in vasoactive intestinal polypeptide but not substance P. Gastroenterology, 89: 967–976.10.1016/0016-5085(85)90195-7
  6. Belai A., Calcutt N. A., Carrington A. L., Diemel L. T., Tomlinson D. R., Burnstock G. (1996). Enteric neuropeptides in streptozotocindiabetic rats; effects of insulin and aldose reductase inhibition. Auton. Nerv. Syst., 58: 163–169.10.1016/0165-1838(95)00129-8
  7. Botella A., Delvaux M., Frexinos J., Bueno L. (1992). Comparative effects of galanin on isolated smooth muscle cells from ileum in five mammalian species. Life. Sci., 50: 1253–1261.10.1016/0024-3205(92)90325-J
  8. Brehmer A., Schrodl F., Neuhuber W. (2006). Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem. Cell. Biol., 125: 557–565.10.1007/s00418-005-0107-8
  9. Brehmer A., Rupprecht H., Neuhuber W. (2010). Two submucosal nerve plexus in human intestines. Histochem. Cell. Biol. 133: 149–161.10.1007/s00418-009-0657-2
  10. Brenneman D. E., Hill J. M., Glazner G. W., Gozes I., Philips T. M. (1995). Interleukin-1α and vasoactive intestinal peptide: enigmatic regulation of neuronal survival. Int. J. Dev. Neurosci., 13: 187–200.10.1016/0736-5748(95)00014-8
  11. Brenneman D. E., Philips T. M., Hauser J., Hill J. M., Spong C., Gozes I. (2003). Complex array of cytokines released by vasoactive intestinal peptide. Neuropeptides, 37: 111–119.10.1016/S0143-4179(03)00022-2
  12. Bulc M., Gonkowski S., Całka J. (2015). Expression of cocaine and amphetamine regulated transcript (CART) in the porcine intramural neurons of stomach in the course of experimentally induced diabetes mellitus. J. Mol. Neurosci., 57: 376–385.10.1007/s12031-015-0618-2
  13. Bulc M., Palus K., Zielonka L., Gajecka M., Całka J. (2017), Changes in expression of inhibitory substances in the intramural neurons of the stomach following streptozotocin- induced diabetes in the pig. World. J. Gastroenterol., 23: 6088–6099.10.3748/wjg.v23.i33.6088559750028970724
  14. Bulc M., Palus K., Całka J., Zielonka L. (2018). Changes in immunoreactivity of sensory substances within the enteric nervous system of the porcine stomach during experimentally induced diabetes. J. Diabetes. Res., 2018: 1–18.10.1155/2018/4735659
  15. Bulc M., Palus K., Dąbrowski M., Całka J. (2019). Hyperglycaemia-induced downregulation in expression of nNOS intramural neurons of the small intestine in the pig. Int. J. Mol. Sci., 20: 1681.10.3390/ijms20071681
  16. Burleigh D. E., Banks M. R. (2007). Stimulation of intestinal secretion by vasoactive intestinal peptide and cholera toxin. Auton. Neurosci. Bas. Clin., 133: 64–75.10.1016/j.autneu.2006.08.004
  17. Chandrasekharan B., Srinivasan S. (2007). Diabetes and the enteric nervous system. Neurogastroenterol. Motil., 19: 951–960.10.1111/j.1365-2982.2007.01023.x
  18. Clerc N., Furness J. B. (2004). Intrinsic primary afferent neurones of the digestive tract. Neurogastroenterol. Motil., 16: 24–27.10.1111/j.1743-3150.2004.00470.x
  19. Costa M., Furness J. B. (1982). Neuronal peptides in the intestine. Br. Med. Bull., 38: 247–252.10.1093/oxfordjournals.bmb.a071768
  20. Demedts I., Masaoka T., Kindt S., De Hertogh G., Geboes K., Farré R., Vanden Berghe P., Tack J. (2013). Gastrointestinal motility changes and myenteric plexus alterations in spontaneously diabetic biobreeding rats. J. Neurogastroenterol. Motil., 19: 161–170.10.5056/jnm.2013.19.2.161
  21. Ekblad E. (2006). CART in the enteric nervous system. Peptides, 27: 2024–2030.10.1016/j.peptides.2005.12.015
  22. Ekblad E., Kuhar M., Wierup N., Sundler F. (2003). Cocaine- and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract. Neurogastroenterol. Motil., 15: 545–557.10.1046/j.1365-2982.2003.00437.x
  23. Ellis L. M., Mawe G.M., (2003). Distribution and chemical coding of cocaine- and amphetamineregulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel. Cell. Tissue. Res., 312: 265–274.10.1007/s00441-002-0678-9
  24. Evangelista S., Tramontana M. (1993). Involvement of calcitonin gene-related peptide in rat experimental colitis. J. Physiol., 87: 277–280.10.1016/0928-4257(93)90017-N
  25. Feher E., Batbayar B., Ver A. (2006). Changes of the different neuropeptide-containing nerve fibres and immune cells in the diabetic rat’s alimentary tract. Ann. N.Y. Acad. Sci., 1084: 280–295.10.1196/annals.1372.023
  26. Foxt-Threlkeld J. E. T., Mc Donald T. J., Cipris S., Woskowska Z., Daniel E. E. (1991). Galanin inhibition of vasoactive intestinal polypeptide release and circular muscle motility in the isolated perfused canine ileum. Gastroenterology, 101: 1471–1476.10.1016/0016-5085(91)90381-T
  27. Furness J. B. (2000). Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst., 81: 87–96.10.1016/S0165-1838(00)00127-2
  28. Furness J. B. (2006). The organisation of the autonomic nervous system: peripheral connections. Auton. Neurosci., 130: 1–5.10.1016/j.autneu.2006.05.003
  29. Furness J. B. (2012). The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroent. Hepatol., 5: 286–294.10.1038/nrgastro.2012.32
  30. Furness J. B., Callaghan B. P., Rivera L. R., Cho H. J. (2014). The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 817: 39–71.10.1007/978-1-4939-0897-4_3
  31. Gatopoulou A. N., Papanas E., Maltezos A. (2012). Diabetic gastrointestinal autonomic neuropathy: current status and new achievements for everyday clinical practice. Eur. J. Intern. Med., 6: 499–505.10.1016/j.ejim.2012.03.001
  32. Gonkowski S., Rytel L. (2019). Somatostatin as an active substance in the mammalian enteric nervous system. Int. J. Mol. Sci., 20: 4461.10.3390/ijms20184461
  33. Gonkowski S., Burliński P., Skobowiat C., Majewski M., Arciszewski M. B., Radziszewski P., Całka J. (2009). Distribution of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) nerve structures in the porcine large intestine. Acta. Vet. Hung., 4: 509–520.10.1556/avet.57.2009.4.5
  34. Gonkowski S., Burliński P., Skobowiat C., Majewski M., Całka J. (2010). Inflammation-and axotomy-induced changes in galanin-like immunoreactive (GAL-LI) nerve structures in the porcine descending colon. Acta. Vet. Hung., 58: 91–103.10.1556/avet.58.2010.1.10
  35. Greenwood-Van Meerveld B., Johnson A. C., Grundy D. (2017). Gastrointestinal physiology and function. Handb. Exp. Pharmacol., 239: 1–16.10.1007/164_2016_118
  36. Grüssner R., Nakhleh R., Grüssner A., Tomadze G., Diem P., Sutherland D. (1993). Streptozotocin-induced diabetes mellitus in pigs. Horm. Metab. Res., 25: 199–203.10.1055/s-2007-1002076
  37. Jaworski J. N., Jones D. C. (2006). The role of CART in the reward/reinforcing properties of psychostimulants. Peptides, 27: 1993–2004.10.1016/j.peptides.2006.03.034
  38. Juranek J. K., Aleshin A., Rattigan E. M. (2010). Morphological changes and immunohistochemical expression of RAGE and its ligands in the sciatic nerve of hyperglycemic pig (Sus scrofa). Biochem. Insights., 2010: 47–59.10.4137/BCI.S5340
  39. Kaiser E. A., Rea B. J., Kuburas A., Kovacevich B. R., Garcia-Martinez L. F., Recober A., Russo A. F. (2017). Anti-CGRP antibodies block CGRP-induced diarrhea in mice. Neuropeptides, 64: 95–99.10.1016/j.npep.2016.11.004
  40. Kaleczyc J., Klimczuk M., Franke-Radowiecka A., Sienkiewicz W., Majewski M., Łakomy M. (2007). The distribution and chemical coding of intramural neurons supplying the porcine stomach – the study on normal pigs and on animals suffering from swine dysentery. Anat. Histol. Embryol., 36: 186–193.10.1111/j.1439-0264.2006.00744.x
  41. Keast J. R., Furness J. B., Costa M. (1985). Distribution of certain peptide-containing nerve fibres and endocrine cells in the gastrointestinal mucosa in five mammalian species. J. Comp. Neurol., 236: 403–422.10.1002/cne.902360308
  42. Lambrecht N., Burchert M., Respondek M., Müller K. M., Peskar B. M. (1993). Role of calcitonin gene-related peptide and nitric oxide in the gastroprotective effect of capsaicin in the rat. Gastroenterology, 104: 1371–1380.10.1016/0016-5085(93)90345-D
  43. Li F. J., Zou Y. Y., Cui Y., Yin Y., Guo G., Lu F. G. (2013). Calcitonin gene-related peptide is a promising marker in ulcerative colitis. Dig. Dis. Sci., 58: 686–693.10.1007/s10620-012-2406-y
  44. Makowska K. (2018). Chemically induced inflammation and nerve damage affect the distribution of vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) nervous structures in the descending colon of the domestic pig. Neurogastroenterol. Motil., 30: 13439.10.1111/nmo.13439
  45. Makowska K., Gonkowski S. (2018). The influence of inflammation and nerve damage on the neurochemical characterization of calcitonin gene-related peptide-like immunoreactive (CGRP-LI) neurons in the enteric nervous system of the porcine descending colon. Int. J. Mol. Sci., 19: 548.10.3390/ijms19020548
  46. Makowska K., Gonkowski S. (2019). Age and sex-dependent differences in the neurochemical characterization of calcitonin gene-related peptide-like immunoreactive (CGRP-LI) nervous structures in the porcine descending colon. Int. J. Mol. Sci., 20: 1024.10.3390/ijms20051024
  47. Makowska K., Gonkowski S., Zielonka L., Dabrowski M., Calka J. (2017). T2 toxininduced changes in cocaine- and amphetamine-regulated transcript (CART)-like immunoreactivity in the enteric nervous system within selected fragments of the porcine digestive tract. Neurotox. Res., 31: 136–147.10.1007/s12640-016-9675-8
  48. Nassar C. F., Abdallah L. E., Barada K. A., Atweh S. F., Saadé N. F. (1995). Effects of intravenous vasoactive intestinal peptide injection on jejunal alanine absorption and gastric acid secretion in rats. Regul. Pept., 55: 261–267.10.1016/0167-0115(94)00114-D
  49. Nuki C., Kawasaki H., Kitamura K., Takenaga M., Kangawa K., Eto T. (1993). Vasodilator effect of adrenomedullin and calcitonin gene-related peptide receptors in rat mesenteric vascular beds. Biochem. Biophys. Res. Commun., 196: 245–251.10.1006/bbrc.1993.2241
  50. Ohno T., Hattori Y., Komine R., Ae T., Mizuguchi S., Arai K., Saeki T., Suzuki T., Hosono K., Hayashi I. (2008). Roles of calcitonin gene-related peptide in maintenance of gastric mucosal integrity and in enhancement of ulcer healing and angiogenesis. Gastroenterology, 134: 215–225.10.1053/j.gastro.2007.10.001
  51. Palus K., Bulc M., Całka J. (2018 a). Changes in VIP-, SP- and CGRP- like immunoreactivity in intramural neurons within the pig stomach following supplementation with low and high doses of acrylamide. Neurotoxicology, 69: 47–59.10.1016/j.neuro.2018.09.00230222996
  52. Palus K., Makowska K., Całka J. (2018 b). Acrylamide-induced alterations in the cocaine- and amphetamine-regulated peptide transcript (CART)-like immunoreactivity within the enteric nervous system of the porcine small intestines. Ann. Anat., 219: 94–101.10.1016/j.aanat.2018.06.00229944933
  53. Palus K., Makowska K., Całka J. (2019). Alterations in galanin-like immunoreactivity in the enteric nervous system of the porcine stomach following acrylamide supplementation. Int. J. Mol. Sci., 20: 3345.10.3390/ijms20133345
  54. Philips R. J., Powley T. L. (2007). Innervation of the gastrointestinal tract: Patterns of aging. Auton. Neurosci., 136: 1–19.10.1016/j.autneu.2007.04.005
  55. Rees D. A., Alcolado J. C. (2005). Animal models of diabetes mellitus. Diabet. Med., 22: 359–370.10.1111/j.1464-5491.2005.01499.x
  56. Sanders K. M., Ward S. M. (1992). Nitric oxide as a mediator of nonadrenergic, noncholinergic neurotransmission. Am. J. Physiol., 262: G379–G392.10.1152/ajpgi.1992.262.3.G379
  57. Schleiffer R., Raul F. (1997). Nitric oxide and the digestive system in mammals and nonmammalian vertebrates. Comp. Biochem. Physiol., 118A: 965–974.10.1016/S0300-9629(97)00026-1
  58. Shah V., Lyford G., Gores G., Farrugia G. (2004). Nitric oxide in gastrointestinal health and disease. Gastroenterology, 126: 903–913.10.1053/j.gastro.2003.11.046
  59. Skobowiat C., Calka J., Majewski M. (2011). Axotomy induced changes in neuronal plasticity of sympathetic chain ganglia (SChG) neurons supplying descending colon in the pig. Exp. Mol. Pathol., 90: 13–18.10.1016/j.yexmp.2010.11.004
  60. Swindle M. M. (2012). The development of swine models in drug discovery and development. Future. Med. Chem., 4: 1771–1772.10.4155/fmc.12.113
  61. Swindle M. M., Smith A. C. (1998). Comparative anatomy and physiology of the pig. Scand. J. Lab. Anim. Sci., 25: 11–21.
  62. Szymanska K., Calka J., Gonkowski S. (2018). Nitric oxide as an active substance in the enteric neurons of the porcine digestive tract in physiological conditions and under intoxication with bisphenol A (BPA). Nitric. Oxide, 80: 1–11.10.1016/j.niox.2018.08.001
  63. Timmermans J. P., Scheuermann D. W., Stach W., Adriaensen D., de Groodt-Lesseal M. H. A. (1992 a). Functional morphology of the enteric nervous system with special reference to large mammals. Eur. J. Morphol., 30: 113–122.
  64. Timmermans J. P., Scheuermann D. W., Barbiers M., Adriaensen D., Stach W., Van Hee R., De Groodt-Lasseel M. H. A. (1992 b). Calcitonin gene-related peptide-like immunoreactivity in the human small intestine. Acta. Anat., 143: 48–53.10.1159/0001472271585788
  65. Vasina V., Barbara G., Talamonti L. (2006). Enteric neuroplasticity evoked by inflammation. Auton. Neurosci., 127: 264–272.10.1016/j.autneu.2006.02.025
  66. Vincent A. M., Russell J. W., Low P., Feldman E. L. (2004). Oxidative stress in the pathogenesis of diabetic neuropathy. Endocrin. Rev., 25: 612–628.10.1210/er.2003-0019
  67. Vinik A. I., Maser R. E., Mitchell B. D., Freeman R. (2003). Diabetic autonomic neuropathy Diabetes. Care, 5: 1553–1579.10.2337/diacare.26.5.1553
  68. Whittaker V. P. (1989). Vasoactive intestinal polypeptide (VIP) as a cholinergic co-transmitter: some recent results. Cell. Biol. Int. Rep., 13: 1039–1051.10.1016/0309-1651(89)90018-0
  69. Wolf M., Schrödl F., Neuhuber W., Brehmer A. (2007). Calcitonin gene-related peptide: A marker for putative primary afferent neurons in the pig small intestinal myenteric plexus? Anat. Rec., 290: 1273–1279.10.1002/ar.20577
  70. Yarandi S. S., Srinivasan S. (2014). Diabetic gastrointestinal motility disorders and the role of enteric nervous system: Current status and future directions. Neurogastroenterol. Motil., 26: 611–624.10.1111/nmo.12330
  71. Young H. M., Furness J. B., Shuttleworth C. W. R., Bredt D. S., Snyder S. H. (1992). Colocalization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry, 97: 375–378.10.1007/BF00270041
DOI: https://doi.org/10.2478/aoas-2020-0121 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1403 - 1422
Submitted on: Jul 12, 2020
|
Accepted on: Dec 1, 2020
|
Published on: Oct 28, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2021 Michał Bulc, Jarosław Całka, Łukasz Zielonka, Michał Dąbrowski, Katarzyna Palus, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.