Have a personal or library account? Click to login
Assessment of parametric and non-parametric methods for prediction of quantitative traits with non-additive genetic architecture Cover

Assessment of parametric and non-parametric methods for prediction of quantitative traits with non-additive genetic architecture

Open Access
|May 2021

References

  1. Abdollahi-Arpanahi R., Pakdel A., Nejati-Javaremi A., Shahrbabak M. M., Ghafouri-Kesbi F. (2014). The relation between the genetic architecture of quantitative traits and long-term genetic response. J. Appl. Genet., 1–9.10.1007/s13353-014-0205-124671636
  2. Abdollahi-Arpanahi R., Morota G., Valente B., Kranis A., Rosa G. (2015). Assessment of bagging GBLUP for whole genome prediction of broiler chicken traits. J. Anim. Breed. Genet., 132: 218–228.
  3. Abdollahi-Arpanahi R., Gianola D., Peñagaricano F. (2020). Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes. Genet. Sel. Evol., 52: 1–15.
  4. Breiman L. (2001). Random forests. Machine Learning, 45: 5–32.
  5. Carlborg Ö., Haley C. S. (2004). Epistasis: too often neglected in complex trait studies? Nat. Rev. Genet., 5: 618.
  6. Charfeddine N., Rodríguez-Ramilo S. T., Jiménez-Montero J. A., Carabaño M. J., González-Recio O. (2013). Non parametric vs. GBLUP model for genomic evaluation with large reference population in Holstein cattle. Interbull Bull., 47.
  7. Daetwyler H. D., Villanueva B., Bijma P., Woolliams J. A. (2007). Inbreeding in genome-wide selection. J. Anim. Breed. Genet., 124: 369–376.
  8. Dai Z., Long N., Huang W. (2019). Influence of genetic interactions on polygenic prediction. BioRxiv: 667162.
  9. de Almeida Filho J., Guimarães J., e Silva F., de Resende M., Muñoz P., Kirst M., Resende M. (2016). The contribution of dominance to phenotype prediction in a pine breeding and simulated population. Heredity, 117: 33–41.
  10. delos Campos G., Hickey J. M., Pong-Wong R., Daetwyler H. D., Calus M. P. (2013). Whole-genome regression and prediction methods applied to plant and animal breeding. Genetics, 193: 327–345.
  11. Duchemin S., etal. (2012). Genomic selection in the French Lacaune dairy sheep breed. J. Dairy Sci., 95: 2723–2733.
  12. Evans D. M., Marchini J., Morris A. P., Cardon L. R. (2006). Two-stage two-locus models in genome-wide association. PLoS Genet., 2:e157.
  13. Falconer D. S., Mackay T. F. (1996). Introduction to quantitative genetics. Harlow: Addison Wesley Longman.
  14. Gengler N., Van Vleck L. D., Mac Neil M., Misztal I., Pariacote F. (1997). Influence of dominance relationships on the estimation of dominance variance with sire-dam subclass effects. J. Anim. Sci., 75: 2885–2891.
  15. Gianola D., Fernando R. L., Stella A. (2006). Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics, 173: 1761–1776.
  16. Gianola D., Weigel K. A., Krämer N., Stella A., Schön C. -C. (2014). Enhancing genome-enabled prediction by bagging genomic BLUP. PLoS One, 9:e91693.
  17. Hastie T., Tibshirani R., Friedman J. (2009). The elements of statistical learning: prediction, inference and data mining. Springer-Verlag, New York.
  18. Heidaritabar M., Wolc A., Arango J., Zeng J., Settar P., Fulton J. E., O’Sullivan N. P., Bastiaansen J. W. M., Fernando R. L., Garrick D. J., Dekkers J. C. M. (2016). Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. J. Anim. Breed. Genet., 133: 334–346.
  19. Howard R., Carriquiry A. L., Beavis W. D. (2014). Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3: Gen. Genom. Genet., 4: 1027–1046.
  20. Lee S. H., vander Werf J. H., Hayes B. J., Goddard M. E., Visscher P. M. (2008). Predicting unobserved phenotypes for complex traits from whole-genome SNP data. PLoS Genet, 4:e1000231.
  21. Liaw A., Wiener M. (2002). Classification and regression by randomForest. R News, 2: 18–22.
  22. Long N., Gianola D., Rosa G. J., Weigel K. A. (2011). Marker-assisted prediction of non-additive genetic values. Genetica, 139: 843–854.
  23. Lorenzana R. E., Bernardo R. (2009). Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor. Appl. Genet., 120: 151–161.
  24. Lynch M., Walsh B. (1998). Genetics and analysis of quantitative traits. Sinauer Sunderland, MA.
  25. Marchini J., Donnelly P., Cardon L. R. (2005). Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet., 37: 413.
  26. Meuwissen T., Hayes B., Goddard M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.
  27. Momen M., etal. (2018). Predictive ability of genome-assisted statistical models under various forms of gene action. Sci. Rep., 8.
  28. Nazarian A., Gezan S. A. (2016). Integrating nonadditive genomic relationship matrices into the study of genetic architecture of complex traits. J. Heredity, 107: 153–162.
  29. Norris D., Varona L., Ngambi J., Visser D., Mbajiorgu C. A., Voordewind S. (2010). Estimation of the additive and dominance variances in SA Duroc pigs. Livest. Sci., 131: 144–147.
  30. Ober U., etal. (2012). Using whole-genome sequence data to predict quantitative trait phenotypes in Drosophila melanogaster. PLoS Genet, 8:e1002685.
  31. Palucci V., Schaeffer L. R., Miglior F., Osborne V. (2007). Non-additive genetic effects for fertility traits in Canadian Holstein cattle. Genet. Select. Evol., 39: 181.
  32. Pérez P., de Los Campos G. (2014). Genome-wide regression & prediction with the BGLR statistical package. Genetics, 114: 164442.
  33. Pryce J., Hayes B., Goddard M. (2012). Novel strategies to minimize progeny inbreeding while maximizing genetic gain using genomic information. J. Dairy Sci., 95: 377–388.
  34. Sahebalam H., Gholizadeh M., Hafezian H., Farhadi A. (2019). Comparison of parametric, semiparametric and nonparametric methods in genomic evaluation. J. Genet., 98: 102.
  35. Schierenbeck S., etal. (2011). Controlling inbreeding and maximizing genetic gain using semi-definite programming with pedigree-based and genomic relationships. J. Dairy Sci., 94: 6143–6152.
  36. Su G., Christensen O. F., Ostersen T., Henryon M., Lund M. S. (2012). Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PloS One, 7:e45293.
  37. Sun X., Ma P., Mumm R. H. (2012). Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding. PloS One, 7:e50604.
  38. Tan B., Grattapaglia D., Wu H. X., Ingvarsson P. K. (2018). Genomic relationships reveal significant dominance effects for growth in hybrid Eucalyptus. Plant Sci., 267: 84–93.
  39. Technow F. (2013). R package hypred: Simulation of genomic data in applied genetics.
  40. Van Raden P., Van Tassell C., Wiggans G., Sonstegard T., Schnabel R., Taylor J., Schenkel F. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 92: 16–24.
  41. Waldmann P. (2016). Genome-wide prediction using Bayesian additive regression trees. Genet. Sel. Evol., 48: 42.
DOI: https://doi.org/10.2478/aoas-2020-0087 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 469 - 484
Submitted on: Oct 13, 2019
Accepted on: Aug 5, 2020
Published on: May 8, 2021
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Abdolreza Salehi, Maryam Bazrafshan, Rostam Abdollahi-Arpanahi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.