Have a personal or library account? Click to login
Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model Cover

Acrylamide-Induced Prenatal Programming of Bone Structure in Mammal Model

Open Access
|Nov 2020

References

  1. Allam A.A., El-Ghareeb A.W., Abdul-Hamid M., Bakery A.E., Gad M., Sabri M.(2010). Effect of prenatal and perinatal acrylamide on the biochemical and morphological changes in liver of developing albino rat. Arch. Toxicol., 84: 129–141.10.1007/s00204-009-0475-2
  2. Allam A., El-Ghareeb A., Abdul-Hamid M., Baikry A., Sabri M.(2011). Prenatal and perinatal acrylamide disrupts the development of cerebellum in rat: biochemical and morphological studies. Toxicol. Ind. Health, 27: 291–306.10.1177/0748233710386412
  3. Bai X.C., Lu D., Liu A.L., Zhang Z.M., Li X.M., Zou Z.P., Zeng W.S., Cheng B.L., Luo S.Q.(2005). Reactive oxygen species stimulates receptor activator of NF-κB ligand expression in osteoblast. J. Biol. Chem., 280: 17497–17506.10.1074/jbc.M409332200
  4. Basu S., Michaëlsson K., Olofsson H., Johansson S., Melhus H.(2001). Association between oxidative stress and bone mineral density. Biochem. Biophys. Res. Commun., 288: 275–279.10.1006/bbrc.2001.5747
  5. Blair J.M., Zheng Y., Dunstan C.R.(2007). RANK ligand. Int. J. Biochem. Cell Biol., 39: 1077–1081.10.1016/j.biocel.2006.11.008
  6. Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyński S.(2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS One, 12: e0179693.10.1371/journal.pone.0179693
  7. Blumenthal G.M., Abdel-Rahman A.A., Wilmarth K.R., Friedman M.A., Abou-Donia M.B.(1995). Toxicokinetics of a single 50 mg/kg oral dose of [2,3-14C]acrylamide in White Leghorn hens. Fundam. Appl. Toxicol., 27: 149–153.10.1093/toxsci/27.1.149
  8. Camplejohn K.L., Allard S.A.(1988). Limitations of safranin 'O' staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry, 89: 185–188.10.1007/BF00489922
  9. Carter A.M., Kingston M.J., Han K.K., Mazzuca D.M., Nygard K., Han V.K.(2005). Altered expression of IGFs and IGF-binding proteins during intrauterine growth restriction in guinea pigs. J. Endocrinol., 184: 179–189.10.1677/joe.1.05781
  10. Dauncey M.J., Bicknell R.J.(1999). Nutrition and neurodevelopment: mechanisms of developmental dysfunction and disease in later life. Nutr. Res. Rev., 12: 231–253.10.1079/095442299108728947
  11. Deng X., He G., Levine A., Cao Y., Mullins C.(2008). Adenovirus-mediated expression of TIMP-1 and TIMP-2 in bone inhibits osteolytic degradation by human prostate cancer. Int. J. Cancer, 122: 209–218.10.1002/ijc.23053
  12. Deng Z.H., Li Y.S., Gao X., Lei G.H., Huard J.(2018). Bone morphogenetic proteins for articular cartilage regeneration. Osteoarthritis Cartilage, 26: 1153–1161.10.1016/j.joca.2018.03.007
  13. Duarte-Salles T., von Stedingk H., Granum B., Gützkow K.B., Rydberg P., Törnqvist M., Mendez M.A., Brunborg G., Brantsæter A.L., Meltzer H.M., Alexander J., Haugen M.(2013). Dietary acrylamide intake during pregnancy and fetal growth – results from the Norwegian mother and child cohort study (MoBa). Environ. Health Perspect., 121: 374–379.10.1289/ehp.1205396
  14. EFSA(European Food Safety Authority)(2015). Scientific opinion on acrylamide in food. EFSA J., 13: 4104.10.2903/j.efsa.2015.4104
  15. El-Bakry A.M., Abdul-Hamid M., Allam A.(2013). Prenatal and perinatal exposure of acrylamide disrupts the development of spinal cord in rats. World J. Neurosci., 3: 17–31.10.4236/wjns.2013.31003
  16. EU(European Commission)(2017). Commission Recommendation No 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. EU, L304: 24–44.
  17. Faria M., Ziv T., Gómez-Canela C., Ben-Lulu S., Prats E., Novoa-Luna K.A., Admon A., Piña B., Tauler R., Gómez-Oliván L.M., Raldúa D.(2018). Acrylamide acute neurotoxicity in adult zebrafish. Sci. Rep., 8: 7918.10.1038/s41598-018-26343-2
  18. Garrett I.R., Boyce B.F., Oreffo R.O., Bonewald L., Poser J., Mundy G.R.(1990). Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest., 85: 632–639.10.1172/JCI114485
  19. Gomez D.E., Alonso D.F., Yoshiji H., Thorgeirsson U.P.(1997). Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur. J. Cell. Biol., 74: 111–122.
  20. Halle I., Ihling M., Lahrssen-Wiederholt M., Klaffke H., Flachowsky G.(2006). Carry-over of acrylamide from feed (heated potato product) to eggs and body tissues of laying hens. J. Verbr. Lebensm., 1: 290–293.10.1007/s00003-006-0050-1
  21. Hamann N., Zaucke F., Heilig J., Oberländer K.D., Brüggemann G.P., Niehoff A.(2014). Effect of different running modes on the morphological, biochemical, and mechanical properties of articular cartilage. Scand. J. Med. Sci. Sports, 24: 179–188.10.1111/j.1600-0838.2012.01513.x
  22. He M., Wang J., Wang G., Tian Y., Jiang L., Ren Z., Qiu C., Fu Q.(2016). Effect of glucocorticoids on osteoclast function in a mouse model of bone necrosis. Mol. Med. Rep., 14: 1054–1060.10.3892/mmr.2016.5368
  23. Hu K., Olsen B.R.(2016). Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J. Clin. Invest., 26: 509–526.10.1172/JCI82585
  24. Huang X.J., Choi Y.K., Im H.S., Yarimaga O., Yoon E., Kim H.S.(2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors (Basel), 6: 756–782.10.3390/s6070756
  25. Hułas-Stasiak M., Dobrowolski P., Tomaszewska E., Kostro K.(2013). Maternal acrylamide treatment reduces ovarian follicle number in newborn guinea pig offspring. Reprod. Toxicol., 42: 125–131.10.1016/j.reprotox.2013.08.007
  26. Hułas-Stasiak M., Dobrowolski P., Tomaszewska E.(2015). Maternal acrylamide and effects on offspring. In: Acrylamide in food, Gökmen V. (ed). Academic Press, London, UK, pp. 93–107.10.1016/B978-0-12-802832-2.00005-X
  27. Kienzle E., Ranz D., Thielen C., Jezussek M., Schieberle P.(2005). Carry over (transfer) of feed-borne acrylamide into eggs, muscle, serum, and faeces – a pilot study with Japanese quails. J. Anim. Physiol. Anim. Nutr., 89: 79–84.10.1111/j.1439-0396.2005.00550.x
  28. Koszucka A., Nowak A., Nowak I., Motyl I.(2019). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit. Rev. Food Sci. Nutr., 60: 1677–1692.10.1080/10408398.2019.1588222
  29. Lawson K.A., Dunn N.R., Roelen B.A., Zeinstra L.M., Davis A.M., Wright C.V., Korving J.P., Hogan B.L.(1999). BMP4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev., 13: 424–436.10.1101/gad.13.4.424
  30. Mc Kendry A.A., Palliser H.K., Yates D.M., Walker D.W., Hirst J.J.(2010). The effect of betamethasone treatment on neuroactive steroid synthesis in a foetal guinea pig model of growth restriction. J. Neuroendocrinol., 22: 166–174.10.1111/j.1365-2826.2009.01949.x
  31. Mojska H., Gielecińska I., Zielińska A., Winiarek J., Sawicki W.(2015). Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. J. Expo. Sci. Environ. Epidemiol., 26: 288–295.10.1038/jes.2015.12
  32. Muszyński S., Tomaszewska E., KwiecieńM., Dobrowolski P., Tomczyk-Warunek A.(2018). Subsequent somatic axis and bone tissue metabolism responses to a low-zinc diet with or without phytase inclusion in broiler chickens. PLoS One, 13: e0191964.10.1371/journal.pone.0191964
  33. Nagata C., Konishi K., Wada K., Tamura T., Goto Y., Koda S., Mizuta F., Iwasa S.(2019). Maternal acrylamide intake during pregnancy and sex hormone levels in maternal and umbilical cord blood and birth size of offspring. Nutr. Cancer, 71: 77–82.10.1080/01635581.2018.1524018
  34. Pabst K., Mathar W., Palavinskas R., Meisel H., Blüthgen A., Klaffke H.(2005). Acrylamide – occurrence in mixed concentrate feed for dairy cows and carry-over into milk. Food Addit. Contam., 22: 210–213.10.1080/02652030500110964
  35. Palliser H.K., Zakar T., Symonds I.M., Hirst J.J.(2010). Progesterone receptor isoform expression in the guinea pig myometrium from normal and growth restricted pregnancies. Reprod. Sci., 7: 776–782.10.1177/1933719110371517
  36. Pan Q., Yu Y., Chen Q., Li C., Wu H., Wan Y., Ma J., Sun F.(2008). Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J. Cell. Physiol., 217: 228–241.10.1002/jcp.21496
  37. Pedersen M., von Stedingk H., Botsivali M., Agramunt S., Alexander J., Brunborg G., Chatzi L., Fleming S., Fthenou E., Granum B., Gutzkow K.B., Hardie L.J., Knudsen L.E., Kyrtopoulos S.A., Mendez M.A., Merlo D.F., Nielsen J.K., Rydberg P., Segerbäck D., Sunyer J., Wright J., Törnqvist M., Kleinjans J.C., Kogevinas M.(2012). Birth weight, head circumference, and prenatal exposure to acrylamide from maternal diet: the European prospective mother–child study (NewGeneris). Environ. Health Perspect., 120: 1739–1745.10.1289/ehp.1205327
  38. Posey K.L., Coustry F., Veerisetty A.C., Hossain M., Gattis D., Booten S., Alcorn J.L., Seth P.P., Hecht J.T.(2017). Antisense reduction of mutant COMP reduces growth plate chondrocyte pathology. Mol. Ther., 25: 705–714.10.1016/j.ymthe.2016.12.024
  39. Prats E., Gómez-Canela C., Ben-Lulu S., Ziv T., Padrós F., Tornero D., Garcia-Reyero N., Tauler R., Admon A., Raldúa D.(2017). Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci. Rep., 7: 13952.10.1038/s41598-017-14460-3
  40. Raju J., Roberts J., Taylor M., Patry D., Chomyshyn E., Caldwell D., Cooke G., Mehta R.(2015). Toxicological effects of short-term dietary acrylamide exposure in male F344 rats. Environ. Toxicol. Pharmacol., 39: 85–92.10.1016/j.etap.2014.11.009
  41. Reeves P.G., Nielsen F.H., Fahey Jr.G.C.(1993). AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.10.1093/jn/123.11.1939
  42. Rich L., Whittaker P.(2005). Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz. J. Morphol. Sci., 22: 97–104.
  43. Rudyk H., Tomaszewska E., Kotsyumbas I., Muszyński S., Tomczyk-Warunek A., Szymańczyk S., Dobrowolski P., Wiącek D., Kamiński D., Brezvyn O.(2019). Bone homeostasis in experimental fumonisins intoxication of rats. Ann. Anim. Sci., 19: 403–419.10.2478/aoas-2019-0003
  44. Sarocka A., Babosova R., Kovacova V., Omelka R., Semla M., Kapusta E., Goc Z., Formicki G., Martiniakova M.(2017). Acrylamide-induced changes in femoral bone microstructure of mice. Physiol. Res., 66: 1067–1071.10.33549/physiolres.933515
  45. Sarocka A., Kovacova V., Omelka R., Grosskopf B., Kapusta E., Goc Z., Formicki G., Martiniakova M.(2019). Single and simultaneous effects of acrylamide and ethanol on bone microstructure of mice after one remodeling cycle. BMC Pharmacol. Toxicol., 20: 38.10.1186/s40360-019-0317-7
  46. Schneider C.A., Rasband W.S., Eliceiri K.W.(2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.10.1038/nmeth.2089
  47. Seale S.M., Feng Q., Agarwal A.K., El-Alfy A.T.(2012). Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol. Biochem. Behav., 101: 77–84.10.1016/j.pbb.2011.12.006
  48. Sörgel F., Weissenbacher R., Kinzig-Schippers M., Hofmann A., Illauer M., Skot A., Landersdorfer C.(2002). Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 48: 267–274.10.1159/000069715
  49. Suvara S.K., Layton C., Bancroft J.D.(2013). Bancroft’s theory and practice of histological techniques. 7th ed. Edinburgh, UK, Churchill Livingstone, 654 pp.
  50. Śliwa E., Dobrowolski P., Tatara M.R., Piersiak T., Siwicki A., Rokita E., Pierzynowski S.G.(2009). Alpha-ketoglutarate protects the liver of piglets exposed during prenatal life to chronic excess of dexamethasone from metabolic and structural changes. J. Anim. Physiol. Anim. Nutr., 93: 192–202.10.1111/j.1439-0396.2007.00805.x
  51. Tomaszewska E., Dobrowolski P., Wydrych J.(2012). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.
  52. Tomaszewska E., Dobrowolski P., Puzio I.(2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.10.1111/j.1439-0396.2012.01319.x
  53. Tomaszewska E., Dobrowolski P., Puzio I., ProstŁ., Kurlak P., Sawczuk P., Badzian B., Hulas-Stasiak M., Kostro K.(2014). Acrylamide-induced prenatal programming of intestine structure in guinea pig. J. Physiol. Pharmacol., 65: 107–115.
  54. Tomaszewska E., Dobrowolski P., KwiecieńM.(2017a). Alterations in intestinal and liver histomorphology and basal hematological and biochemical parameters in relation to different sources of dietary copper in adult rats. Ann. Anim. Sci., 17: 447–490.10.1515/aoas-2016-0056
  55. Tomaszewska E., Dobrowolski P., KwiecieńM., Winiarska-Mieczan A., Tomczyk A., Muszyński S., Gładyszewska B.(2017b). Dose-dependent influence of dietary Cu-glycine complex on bone and hyaline cartilage development in adolescent rats. Ann. Anim. Sci., 17: 1089–1105.10.1515/aoas-2017-0022
  56. Tomaszewska E., Muszyński S., Dobrowolski P., Winiarska-Mieczan A., KwiecieńM., Tomczyk-Warunek A., Ejtel M., Świetlicka I., Gładyszewska B.(2018). White tea is more effective in preservation of bone loss in adult rats co-exposed to lead and cadmium compared to black, red or green tea. Ann. Anim. Sci., 18: 937–953.10.2478/aoas-2018-0026
  57. Tomaszewska E., Muszyński S., Dobrowolski P., Wiącek D., Tomczyk-Warunek A., Świetlicka I., Pierzynowski S.G.(2019). Maternal HMB treatment affects bone and hyaline cartilage development in their weaned piglets via the leptin/osteoprotegerin system. J. Anim. Physiol. Anim. Nutr., 103: 626–643.10.1111/jpn.13060
  58. Tyla R.W., Friedman M.A.(2003). Effects of acrylamide on rodent reproductive performance. Reprod. Toxicol., 17: 1–13.10.1016/S0890-6238(02)00078-3
  59. Tyla R.W., Friedman M.A., Losco P.E., Fisher L.C., Johnson K.A., Strother D.E., Wolf C.H.(2000). Rat two-generation reproduction and dominant lethal study of acrylamide in drinking water. Reprod. Toxicol., 14: 385–401.10.1016/S0890-6238(00)00097-6
  60. Wang R.N., Green J., Wang Z., Deng Y., Qiao M., Peabody M., Zhang Q., Ye J., Yan Z., Denduluri S., Idowu O., Li M., Shen C., Hu A., Haydon R.C., Kang R., Mok J., Lee M.J., Luu H.L., Shi L.L.(2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis., 1: 87–105.10.1016/j.gendis.2014.07.005
  61. WHO(World Health Organization)(2002). Joint FAO/WHO consultation on health implications of acrylamide in food. WHO Headquarters, Geneva, Switzerland, 25–27.06.2002, https://apps.who.int/iris/handle/10665/42563
  62. Winnicka A.(2015). Reference values of basic laboratory tests in veterinary science (in Polish). 6th ed., SGGW, Warszawa, 148 pp.
  63. Wong M., Siegrist M., Cao X.(1999). Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol., 18: 391–399.10.1016/S0945-053X(99)00029-3
  64. Yu D., Xie X., Qiao B., Ge W., Gong L., Luo D., Zhang D., Li Y., Yang B., Kuang H.(2019). Gestational exposure to acrylamide inhibits mouse placental development in vivo. J. Hazard. Mater., 367: 160–170.10.1016/j.jhazmat.2018.12.061
  65. Zehentner B.K., Dony C., Burtscher H.(1999). The transcription factor Sox9 is involved in BMP-2 signaling. J. Bone Miner. Res., 14: 1734–1741.10.1359/jbmr.1999.14.10.1734
  66. Zoppini G., Cacciatori V., Negri C., Stoico V., Lippi G., Targher G., Bonora E.(2016). The aspartate aminotransferase-to-alanine aminotransferase ratio predicts all-cause and cardiovascular mortality in patients with type 2 diabetes. Medicine (Baltimore), 95: e4821.10.1097/MD.0000000000004821
DOI: https://doi.org/10.2478/aoas-2020-0044 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 1257 - 1287
Submitted on: Feb 25, 2020
Accepted on: Mar 27, 2020
Published on: Nov 7, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ewa Tomaszewska, Piotr Dobrowolski, Iwona Puzio, Janine Donaldson, Siemowit Muszyński, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution 4.0 License.