Have a personal or library account? Click to login
Genome-Wide Association Study and Pathway Analysis for Female Fertility Traits in Iranian Holstein Cattle Cover

Genome-Wide Association Study and Pathway Analysis for Female Fertility Traits in Iranian Holstein Cattle

Open Access
|Aug 2020

References

  1. Abdoli R, Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Ferdosi M.H., Gondro C. (2019a). Genome-wide association study of four composite reproductive traits in Iranian fat-tailed sheep. Reprod Fert Develop., 31(6): 1127-1133.10.1071/RD1828230958977
  2. Abdoli R, Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Gondro C. (2018). Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep. Anim. Genet., 49: 488-491.10.1111/age.12700
  3. Abdoli R, Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Moradi M.H., Ferdosi M.H., Gondro C. (2019b). Genome-wide association study of first lambing age and lambing interval in sheep. Small Ruminant Res., 178: 43-45.10.1016/j.smallrumres.2019.07.014
  4. Aloisio G.M., Nakada Y., Saatcioglu H.D., Peña C.G., Baker M.D., Tarnawa E.D., Mukherjee J., Manjunath H., Bugde A., Sengupta A.L. (2014). PAX7 expression defines germline stem cells in the adult testis. J. Clin. Invest., 124: 3929-3944.10.1172/JCI75943
  5. Ashwell M., Heyen D., Sonstegard T., Van Tassell C., Da Y., VanRaden P., Ron M., Weller J., Lewin H. (2004). Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci., 87: 468-475.10.3168/jds.S0022-0302(04)73186-0
  6. Bal R.D. (2005). Experimental designs for reliable detection of linkage disequilibrium in unstructured random population association studies. Genetics, 170: 859-873.10.1534/genetics.103.024752
  7. Bazer F.W., Spencer T.E., Johnson G.A., Burghardt R.C. (2011). Uterine receptivity to implantation of blastocysts in mammals. Front Biosci (Schol Ed)., 3: 745-767.10.2741/s184
  8. Behnia F., Taylor, B.D., Woodson M., Kacerovsky M., Hawkins H., Fortunato S.J., Saade G.R., Menon, R. (2015) Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol MFM., 213: 359. e1-359. e16.10.1016/j.ajog.2015.05.041
  9. Bhat S.A., Ahmad S.M., Ibeagha-Awemu E.M., Bhat B.A., Dar M.A., Mumtaz P.T., Shah R.A., Ganai N.A. (2019). Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PloS One., 14: 0211773.10.1371/journal.pone.0211773
  10. Bliss S.P., Navratil A.M., Xie J., Roberson M.S. (2010). GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol., 31: 322-340.10.1016/j.yfrne.2010.04.002
  11. Breen S.M., Knox R.V. (2012). The impact of dose of FSH (Folltropin) containing LH (Lutropin) on follicular development, estrus and ovulation responses in prepubertal gilts. Anim. Reprod. Sci., 132: 193-200.10.1016/j.anireprosci.2012.05.013
  12. Cai Z., Guldbrandtsen B., Lund M.S., Sahana G. (2019). Prioritizing candidate genes for fertility in dairy cows using gene-based analysis, functional annotation and differential gene expression. BMC Genomics., 20: 255.10.1186/s12864-019-5638-9
  13. Chang K. (2007). Key signalling factors and pathways in the molecular determination of skeletal muscle phenotype. Animal., 1: 681-698.10.1017/S1751731107702070
  14. Cochran S.D., Cole J.B., Null D.J., Hansen P.J. (2013a). Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetics., 14: 49.10.1186/1471-2156-14-49368657723759029
  15. Cochran S.D., Cole J.B., Null D.J., Hansen P.J. (2013b). Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle. Biol. Reprod., 89 (3): 69.10.1095/biolreprod.113.11126023904513
  16. Costa R.B., Camargo G.M., Diaz I.D., Irano N., Dias M.M., Carvalheiro R., Boligon A.A., Baldi F., Oliveira H.N., Tonhati H. (2015). Genome-wide association study of reproductive traits in Nellore heifers using Bayesian inference. Genet. Sel. Evol., 47: 67.10.1186/s12711-015-0146-0
  17. Demiray S.B., Goker E.N.T., Tavmergen E., Yilmaz O., Calimlioglu N., Soykam H.O., Oktem G., Sezerman U. (2019). Differential gene expression analysis of human cumulus cells. Clin Exp Reprod Med., 46: 76.10.5653/cerm.2019.46.2.76
  18. Do D., Bissonnette N., Lacasse P., Miglior F., Sargolzaei M., Zhao X., Ibeagha-Awemu E. (2017). Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. J. Dairy Sci., 100(3), 1955-1970.10.3168/jds.2016-1191028088409
  19. Doufas A.G., Mastorakos G. (2000). The hypothalamic-pituitary-thyroid axis and the female reproductive system. Ann. N. Y. Acad. Sci., 900: 65-76.10.1111/j.1749-6632.2000.tb06217.x
  20. Eghbalsaied S. (2011) Estimation of genetic parameters for 13 female fertility indices in Holstein dairy cows. Trop Anim Health Prod., 43: 811-816.10.1007/s11250-010-9767-z
  21. Fair T., Lonergan P. (2012). The role of progesterone in oocyte acquisition of developmental competence. Reprod. Domest. Anim., 47: 142-147.10.1111/j.1439-0531.2012.02068.x
  22. Fang L., Sahana G., Su G., Yu Y., Zhang S., Lund M.S., Sørensen P. (2017). Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and milk production in dairy cattle. Sci. Rep., 7: 455-460.10.1038/srep45560
  23. Farhadian M., Rafat S.A., Hasanpur K., Ebrahimi M., Ebrahimie E. (2018a). Cross-species meta-analysis of transcriptomic data in combination with supervised machine learning models identifies the common gene signature of lactation process. Front. Genet., 9: 235.10.3389/fgene.2018.00235605212930050559
  24. Farhadian M., Rafat S.A., Hasanpur K., Ebrahimie E. (2018b). Transcriptome signature of the lactation process, identified by meta-analysis of microarray and RNA-Seq data. Biotechnol Acta., 99: 153-163.10.5114/bta.2018.75659
  25. Frischknecht M., Bapst B., Seefried F.R., Signer-Hasler H., Garrick D., Stricker C., Fries R., Russ I., Sölkner J., Bieber A. (2017). Genome-wide association studies of fertility and calving traits in Brown Swiss cattle using imputed whole-genome sequences. BMC Genomics., 18: 910.10.1186/s12864-017-4308-z
  26. Ghasemi M., Zamani P., Vatankhah M., Abdoli R. (2019). Genome-wide association study of birth weight in sheep. Animal., 13: 1797-1803.10.1017/S1751731118003610
  27. Ghiasi H., Pakdel A., Nejati-Javaremi A., Mehrabani-Yeganeh H., Honarvar M., González-Recio O., Carabaño M.J., Alenda R. (2011). Genetic variance components for female fertility in Iranian Holstein cows. Livest Sci., 139: 277-280.10.1016/j.livsci.2011.01.020
  28. Goddard M.E., Hayes B.J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet., 10: 381.10.1038/nrg2575
  29. Han B., Kang H.M., Eskin, E. (2009). Rapid and accurate multiple testing correction and power estimation for millions of correlated markers. PLoS Genet., 5 (4): e1000456.10.1371/journal.pgen.1000456
  30. Hirose M., Kamoshita M., Fujiwara K., Kato T., Nakamura A., Wojcikiewicz R.J., Parys J.B., Ito J., Kashiwazaki N. (2013). Vitrification procedure decreases inositol 1, 4, 5-trisphophate receptor expression, resulting in low fertility of pig oocytes. J. Anim. Sci., 84: 693-701.10.1111/asj.12061
  31. Höglund J.K., Buitenhuis B., Guldbrandtsen B., Lund M.S., Sahana G. (2015). Genome-wide association study for female fertility in Nordic Red cattle. BMC Genetics., 16: 110.10.1186/s12863-015-0269-x
  32. Ibeagha-Awemu E.M., Peters S.O., Akwanji K.A., Imumorin I.G., Zhao X. (2016). High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci. Rep., 6: 31109.10.1038/srep31109
  33. Institute S. (2014) ‘SAS 9.4 Output delivery system: User’s guide.’ (SAS institute).
  34. Jamrozik J., Fatehi J., Kistemaker G.J., Schaeffer L.R. (2005). Estimates of Genetic Parameters for Canadian Holstein Female Reproduction Traits. J. Dairy Sci., 88: 2199-2208.10.3168/jds.S0022-0302(05)72895-2
  35. Jiang L., Liu X., Yang J., Wang H., Jiang J., Liu L., He S., Ding X., Liu J., Zhang Q. (2014). Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits. BMC Genomics., 15: 1105.10.1186/1471-2164-15-1105
  36. Kadarmideen H., Thompson R., Simm G. (2000). Linear and threshold model genetic parameters for disease, fertility and milk production in dairy cattle. Anim. Sci., 71: 411-419.10.1017/S1357729800055338
  37. Klein R.J., Zeiss C., Chew E.Y., Tsai J.-Y., Sackler R.S., Haynes C., Henning A.K., SanGiovanni J.P., Mane S.M., Mayne S.T. (2005). Complement factor H polymorphism in age-related macular degeneration. Science., 308: 385-389.10.1126/science.1109557
  38. Kolbehdari D., Wang Z., Grant J., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P., Moore S. (2009). A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet., 126: 216-227.10.1111/j.1439-0388.2008.00793.x
  39. Kominakis A., Hager-Theodorides A.L., Zoidis E., Saridaki A., Antonakos G., Tsiamis G. (2017). Combined GWAS and ‘guilt by association’-based prioritization analysis identifies functional candidate genes for body size in sheep. Genet. Sel. Evol., 49 (1): 41.10.1186/s12711-017-0316-3
  40. Kulak K., Dekkers J., McAllister A., Lee A. (1997). Relationships of early performance traits to lifetime profitability in Holstein cows. Can. J. Anim. Sci., 77: 617-624.10.4141/A96-129
  41. Liu A., Wang Y., Sahana G., Zhang Q., Liu L., Lund M.S., Su G. (2017). Genome-wide association studies for female fertility traits in Chinese and Nordic Holsteins. Sci. Rep., 7 (1): 8487.10.1038/s41598-017-09170-9
  42. Lonergan P. (2011) Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology., 76: 1594-1601.10.1016/j.theriogenology.2011.06.012
  43. Loveland K.L., Klein B., Pueschl D., Indumathy S., Bergmann M., Loveland B.E., Hedger M.P., Schuppe H.-C. (2017). Cytokines in male fertility and reproductive pathologies: Immunoregulation and beyond. Front Endocrinol., 8: 307.10.3389/fendo.2017.00307
  44. Ma K., Liao M., Liu F., Ye B., Sun F., Yue G.H. (2016). Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis spp.). Sci. rep., 6: 25471.10.1038/srep25471
  45. Minozzi G., Nicolazzi E.L., Stella A., Biffani S., Negrini R., Lazzari B., Ajmone-Marsan P., Williams J.L. (2013). Genome wide analysis of fertility and production traits in Italian Holstein cattle. PLoS One., 8 (11): e80219.10.1371/journal.pone.0080219
  46. Misztal I. Auvray B, Druet T, Lee DH. (2002). BLUPF90 and related programs (BGF90). In ‘Proceedings of 7th World Congress on Genetics Applied to Livestock Production, Montpelier, France.
  47. Moore S.G., Pryce J.E., Hayes B.J., Chamberlain A.J., Kemper K.E., Berry D.P., McCabe M., Cormican P., Lonergan P., Fair T. (2016). Differentially expressed genes in endometrium and corpus luteum of Holstein cows selected for high and low fertility are enriched for sequence variants associated with fertility. Biol. Rep., 94: 19, 1-11.10.1095/biolreprod.115.13295126607721
  48. Mungall C.J., Bada M., Berardini T.Z., Deegan J., Ireland A., Harris M.A., Hill D.P., Lomax J. (2011). Cross-product extensions of the Gene Ontology. J Biomed Inform., 44: 80-86.10.1016/j.jbi.2010.02.002
  49. Muñoz-Espín D., Cañamero M., Maraver A., Gómez-López G., Contreras J., Murillo-Cuesta S., Rodríguez-Baeza A., Varela-Nieto I., Ruberte J., Collado M. (2013). Programmed cell senescence during mammalian embryonic development. Cell., 155: 1104-1118.10.1016/j.cell.2013.10.019
  50. Nayeri S., Sargolzaei M., Abo-Ismail M., Miller S., Schenkel F., Moore S., Stothard P. (2017). Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. J. Dairy Sci., 100: 1246-1258.10.3168/jds.2016-11770
  51. Nayeri S., Sargolzaei M., Abo-Ismail M.K., May N., Miller S.P., Schenkel F., Moore S.S., Stothard P. (2016). Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genetics., 17 (1): 75.10.1186/s12863-016-0386-1
  52. Neupane M., Geary T.W., Kiser J.N., Burns G.W., Hansen P.J., Spencer T.E., Neibergs H.L. (2017). Loci and pathways associated with uterine capacity for pregnancy and fertility in beef cattle. PloS One., 12: e0188997.10.1371/journal.pone.0188997
  53. Olsen H., Hayes B., Kent M., Nome T., Svendsen M., Larsgard A., Lien S. (2011). Genome-wide association mapping in Norwegian Red cattle identifies quantitative trait loci for fertility and milk production on BTA12. Anim. Genet., 42: 466-474.10.1111/j.1365-2052.2011.02179.x
  54. Ortega M.S., Denicol A.C., Cole J.B., Null D.J., Taylor J.F., Schnabel R.D., Hansen P.J. (2017). Association of single nucleotide polymorphisms in candidate genes previously related to genetic variation in fertility with phenotypic measurements of reproductive function in Holstein cows. J. Dairy Sci., 100: 3725-3734.10.3168/jds.2016-12260
  55. Panahi B., Farhadian M., Dumas J., and Hejazi, M. (2019). Integration of cross species RNA-seq Meta-analysis and Machine Learning Models identifies the most important salt stress responsive pathways in microalga Dunaliella. Front. Genet., 10: 752.10.3389/fgene.2019.00752
  56. Pimentel E., Bauersachs S., Tietze M., Simianer H., Tetens J., Thaller G., Reinhardt F., Wolf E., König S. (2011). Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Anim. Genet., 42: 251-262.10.1111/j.1365-2052.2010.02148.x
  57. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., De Bakker P.I., Daly M.J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. AJHG., 81: 559-575.10.1086/519795
  58. Rempel L.A., Freking B.A., Miles J.R., Nonneman D.J., Rohrer G.A., Vallet J.L., Schneider J.F. (2011). Association of porcine heparanase and hyaluronidase 1 and 2 with reproductive and production traits in a Landrace–Duroc–Yorkshire population. Front. Genet., 2: 20.10.3389/fgene.2011.00020
  59. Reverter A., Fortes M. (2013). Building single nucleotide polymorphism-derived gene regulatory networks: towards functional genomewide association studies. J. Anim. Sci., 91: 530-536.10.2527/jas.2012-5780
  60. Reverter A., Porto-Neto L., Fortes M., McCulloch R., Lyons R., Moore S., Nicol D., Henshall J., Lehnert S. (2016). Genomic analyses of tropical beef cattle fertility based on genotyping pools of Brahman cows with unknown pedigree. J. Anim. Sci., 94: 4096-4108.10.2527/jas.2016-0675
  61. Rezende F., Dietsch G., Peñagaricano F. (2018). Genetic dissection of bull fertility in US Jersey dairy cattle. Anim. Genet., 49: 393-402.10.1111/age.12710
  62. Rolf M., Taylor J., Schnabel R., McKay S., McClure M., Northcutt S., Kerley M., Weaber R. (2012). Genome-wide association analysis for feed efficiency in Angus cattle. Anim. Gen., 43: 367-374.10.1111/j.1365-2052.2011.02273.x
  63. Royal M., Flint A., Woolliams J. (2002). Genetic and phenotypic relationships among endocrine and traditional fertility traits and production traits in Holstein-Friesian dairy cows. J. Anim. Sci., 85: 958-967.10.3168/jds.S0022-0302(02)74155-6
  64. Sargolzaei M. (2014). SNP1101 User’s guide. (Version1.0.0). Semex Alliance, Ontario, Canada.
  65. Schnabel R., Sonstegard T., Taylor J., Ashwell M. (2005). Whole-genome scan to detect QTL for milk production, conformation, fertility and functional traits in two US Holstein families. Anim. Genet., 36: 408-416.10.1111/j.1365-2052.2005.01337.x
  66. Seyedsharifi R., Nurafkan F., Hedayat Evrigh N., Seifdavati J. (2017). Estimation of Economic Value for Productive and Reproductive Traits of Moghan Agro-Industrial Holstein Cows by using Simulation and Bio-Economic Model. IJAS., 9 (20): 15. [Persian]
  67. Shook G. (2006). Major advances in determining appropriate selection goals. J. Dairy Sci., 89: 1349-1361.10.3168/jds.S0022-0302(06)72202-0
  68. Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell., 155: 1119-1130.10.1016/j.cell.2013.10.041
  69. Sullivan P.G., Jamrozik J., and Kistemaker G.J. (2015). De-regressing MACE versus domestic EBV for genomics. Interbull Bulletin(49).
  70. Sutovsky P. (2003). Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc. Res. Tech., 61: 88-102.10.1002/jemt.10319
  71. Toghiani S. (2012). Genetic relationships between production traits and reproductive performance in Holstein dairy cows. Arch Anim Breed., 55: 458-468.10.5194/aab-55-458-2012
  72. Turner S.D. (2014). qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv., 005165.10.1101/005165
  73. VanRaden P.M. (2008). Efficient methods to compute genomic predictions. J. Dairy Sci., 91: 4414-4423.10.3168/jds.2007-0980
  74. Velarde M.C., Menon R. (2016). Positive and negative effects of cellular senescence during female reproductive aging and pregnancy. J. Endocrinol., 230: 59-76.10.1530/JOE-16-0018
  75. Walsh S., Williams E., Evans A. (2011). A review of the causes of poor fertility in high milk producing dairy cows. Anim. Reprod. Sci., 123: 127-138.10.1016/j.anireprosci.2010.12.001
  76. Wang H, Zhang L, Cao J, Wu M, Ma X, Liu Z, Liu R, Zhao F, Wei C, Du L. (2015). Genome-Wide specific selection in three domestic sheep breeds. PLoS One., 10(6): e0128688.10.1371/journal.pone.0128688
  77. Xu S., Gao L., Xie X., Ren Y., Shen Z.,Wang F., Shen M., Eyþórsdóttr E., Hallsson J., Kiseleva T., Juha Kantanen J., Li M. (2018). Genome-Wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Front. Genet. 9:118.10.3389/fgene.2018.00118
  78. Xu S., Wang, D., Zho, D., Lin Y., Che L., Fang Z., Wu D. (2015). Reproductive Hormone and Transcriptomic Responses of Pituitary Tissue in Anestrus Gilts Induced by Nutrient Restriction. PloS One., 10 (11): e0143219.10.1371/journal.pone.0143219
  79. Yang J., Weedon M.N., Purcell S., Lettre G., Estrada K., Willer C.J., Smith A.V., Ingelsson E., O’connell J.R., Mangino M. (2011). Genomic inflation factors under polygenic inheritance. AJHG., 19 (7): 807.10.1038/ejhg.2011.39
DOI: https://doi.org/10.2478/aoas-2020-0031 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 825 - 851
Submitted on: Nov 24, 2019
Accepted on: Mar 3, 2020
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Ali Mohammadi, Sadegh Alijani, Seyed Abbas Rafat, Rostam Abdollahi-Arpanahi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.