Have a personal or library account? Click to login

Genome-Wide Association Study Using Fix-Length Haplotypes and Network Analysis Revealed New Candidate Genes for Nematode Resistance and Body Weight in Blackface Lambs

Open Access
|May 2020

References

  1. Al-Mamun H.A., Kwan P., Clark S.A., Ferdosi M.H., Tellam R., Gondro C. (2015). Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol., 47: 66.10.1186/s12711-015-0142-4
  2. Amorim S.T., Eler J.P., Mattos E., Grigoleto L., Lemos M.V.A., Baldi F., Fer-raz J.B. (2018). Genome wide association study (GWAS) for body weight traits in Santa Inês sheep breed. Proc. 10th World Congress on Genetics Applied to Livestock Production, Vancouver, Canada, 17–22.08.2014, p. 708.
  3. Ardicli S., Dincel D., Samli H., Balci F. (2017). Effects of polymorphisms at LEP, CAST, CAPN1, GHR, FABP4 and DGAT1 genes on fattening performance and carcass traits in Simmental bulls. Arch. Anim. Breed., 60: 61–70.10.5194/aab-60-61-2017
  4. Barbero M.M.D., Santos D.J.A., Takada L., de Camargo G.M.F., Freitas A.C., Diaz I., de Souza F.R.P., Tonhati H., Albuquerque L.G., Oliveira H.N. (2017). Prospecting polymorphisms in the PPP3CA and FABP4 genes and their association with early pregnancy probability in Nellore heifers. Livest. Sci., 203: 76–81.10.1016/j.livsci.2017.07.008
  5. Barendse W. (2011). Haplotype analysis improved evidence for candidate genes for intramuscular fat percentage from a genome wide association study of cattle. PLoS One, 6: e29601.10.1371/journal.pone.0029601
  6. Berton M.P., Silva R.M.O., Peripolli E., Stafuzza N.B., Martin J.F., Álvarez M.S., Gavinã B.V., Toro M.A., Banchero G., Oliveira P.S. (2017). Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J. Anim. Sci., Biotechnol., 8: 73.10.1186/s40104-017-0190-4
  7. Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 25: 1091–1093.10.1093/bioinformatics/btp101
  8. Bohlouli M., Mohammadi H., Alijani S. (2013). Genetic evaluation and genetic trend of growth traits of Zandi sheep in semi-arid Iran using random regression models. Small Rum. Res., 114: 195–201.10.1016/j.smallrumres.2013.07.005
  9. Botta C., Di Martino M.T., Ciliberto D., Cucè M., Correale P., Rossi M., Taglia-ferri P., Tassone P. (2016). A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival. Blood Cancer J., 6: e511.10.1038/bcj.2016.118
  10. Bovo S., Mazzoni G., Bertolini F., Schiavo G., Galimberti G., Gallo M., Dall‘Olio S., Fontanesi L. (2019). Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep., 9: 7003.10.1038/s41598-019-43297-1
  11. Browning B.L., Browning S.R. (2009). A unified approach to genotype imputation and haplo-type-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet., 84: 210–223.10.1016/j.ajhg.2009.01.005
  12. De Almeida Santana M.H., Junior G.A., Cesar A.S., Freua M.C., da Costa Gomes R., da Luz ESilva S., Leme P.R., Fukumasu H., Carvalho M.E., Ventura R.V., Coutinho L.L., Kadarmideen H.N., Ferraz J.B. (2016). Copy number variations and genome-wide associations reveal putative genes and metabolic pathways involved with the feed conversion ratio in beef cattle. J. Appl. Genet., 57: 495–504.10.1007/s13353-016-0344-7
  13. Ferdosi M.H., Henshall J., Tier B. (2016). Study of the optimum haplotype length to build genomic relationship matrices. Genet. Sel. Evol., 48: 75.10.1186/s12711-016-0253-6
  14. Garrick D.J., Fernando R.L. (2013). Implementing a QTL detection study (GWAS) using genomic prediction methodology. In: Genome-Wide Association Studies and Genomic Prediction. Methods Mol. Biol., 1019: 275–298.10.1007/978-1-62703-447-0_11
  15. Gossner A., Wilkie H., Joshi A., Hopkins J. (2013). Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet. Res., 44: 68.10.1186/1297-9716-44-68
  16. Hess M., Druet T., Hess A., Garrick D. (2017). Fixed-length haplotypes can improve genomic prediction accuracy in an admixed dairy cattle population. Genet. Sel. Evol., 49: 54.10.1186/s12711-017-0329-y
  17. Karimi Z., Sargolzaei M., Robinson J.A.B., Schenkel F.S. (2018). Assessing haplotype-based models for genomic evaluation in Holstein cattle. Can. J. Anim. Sci., 98: 750–759.10.1139/cjas-2018-0009
  18. Lindholm-Perry A.K., Artegoitia V.M., Miles J.R., Foote A.P. (2017). Expression of cytokine genes and receptors in white blood cells associated with divergent body weight gain in beef steers. Agri Gene., 6: 37–39.10.1016/j.aggene.2017.09.005
  19. Maharani D., Jung Y., Jung W.Y., Jo C., Ryoo S.H., Lee S.H., Yeon S.H., Lee J.H. (2012). Association of five candidate genes with fatty acid composition in Korean cattle. Mol. Biol. Rep., 39: 6113–6121.10.1007/s11033-011-1426-6
  20. Mateescu R.G., Garrick D.J., Reecy J.M. (2017). Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet., 8: 171.10.3389/fgene.2017.00171
  21. Matika O., Riggio V., Anselme-Moizan M., Law A.S., Pong-Wong R., Archi-bald A.L., Bishop S.C. (2016). Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genet. Sel. Evol., 48: 11.10.1186/s12711-016-0191-3
  22. Meuwissen T.H., Hayes B.J., Goddard M.E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157: 1819–1829.10.1093/genetics/157.4.1819
  23. Meuwissen T.H., Odegard J., Andersen-Ranberg I., Grindflek E. (2014). On the distance of genetic relationships and the accuracy of genomic prediction in pig breeding. Genet. Sel. Evol., 46: 49.10.1186/1297-9686-46-49
  24. Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D., Thomas P.D. (2016). PANTHER: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res., 45: 183–189.10.1093/nar/gkw1138
  25. Mohammadi H., Moradi Shahrebabak M., Moradi Shahrebabak H. (2013). Analysis of genetic relationship between reproductive vs. lamb growth traits in Makooei ewes. J. Agr. Sci. Tech., 15: 45–53.10.1007/s11250-012-0190-5
  26. Moradi M.H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K.G., Mc Ewan J.C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet., 13: 10.10.1186/1471-2156-13-10
  27. Riggio V., Matika O., Pong-Wong R., Stear M.J., Bishop S.C. (2013). Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity, 110: 420–429.10.1038/hdy.2012.90
  28. Rovadoscki G.A., Pertile S.F.N., Alvarenga A.B., Cesar A.S.M., Pértille F., Petri-ni J., Franzo V., Soares W.V.B., Morota G., Spangler M.L. (2018). Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genomics, 19: 375.10.1186/s12864-018-4777-8
  29. Schukken Y.H., Günther J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O., Leigh J., Petzl W., Schuberth H.J., Sipka A. (2011). Host-response patterns of intramam-mary infections in dairy cows. Vet. Immunol. Immunopathol., 144: 270–289.10.1016/j.vetimm.2011.08.022
  30. Schweer K.R., Kachman S.D., Kuehn L.A., Freetly H.C., Pollak J.E., Spangler M.L. (2018). Genome-wide association study for feed efficiency traits using SNP and haplotype models. J. Anim. Sci., 96: 2086–2098.10.1093/jas/sky119
  31. Stranger B.E., Stahl E.A., Raj T. (2011). Progress and promise of genome-wide association studies for human complex trait genetics. Genetics, 187: 367–383.10.1534/genetics.110.120907
  32. Sun X., Habier D., Fernando R.L., Garrick D.J., Dekkers J.C. (2011). Genomic breeding value prediction and QTL mapping of QTLMAS2010 data using Bayesian methods. BMC Proc., 3: S13.10.31274/ans_air-180814-959
  33. Wilkie H., Riggio V., Matika O., Nicol L., Watt K.A., Sinclair R., Sparks A.M., Nussey D.H., Pemberton J.M., Houston R.D. (2017). A candidate gene approach to study nematode resistance traits in naturally infected sheep. Vet. Parasitol., 243: 71–74.10.1016/j.vetpar.2017.06.010
  34. Wolc A., Arango J., Settar P., Fulton J.E., O’Sullivan N.P., Preisinger R., Habier D., Fernando R., Garrick D.J., Hill W.G. (2012). Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim. Genet., 43: 87–96.10.1111/j.1365-2052.2012.02381.x
  35. Zeng J. (2015). Whole genome analyses accounting for structures in genotype data. Ames: Iowa State University.
  36. Zhang H., Wang Z., Wang S., Li H. (2012). Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotechnol., 3: 26.10.1186/2049-1891-3-26
  37. Zhang L., Liu J., Zhao F., Ren H., Xu L., Lu J., Zhang S., Zhang X., Wei C., Lu G. (2013). Genome-wide association studies for growth and meat production traits in sheep. PLoS One, 8: e66569.10.1371/journal.pone.0066569
  38. Zhao Y., Zhu H., Lu Z., Knickmeyer R.C., Zou F. (2019). Structured genome-wide association studies with Bayesian hierarchical variable selection. Genetics, 212: 397–415.10.1534/genetics.119.301906
DOI: https://doi.org/10.2478/aoas-2020-0028 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 445 - 464
Submitted on: Sep 29, 2019
Accepted on: Feb 28, 2020
Published on: May 4, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Amir Hossein Khaltabadi Farahani, Hossein Mohammadi, Mohammad Hossein Moradi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.