References
- Aaron J.W., Hsueh A.J.W., Kawamura K., Cheng Y., Fauser B.C.J.M. (2015). Intraovarian control of early folliculogenesis. Endocr. Rev., 36: 1–24.10.1210/er.2014-1020
- Baker, J., Hardy, M.P., Zhou, J., Bondy, C., Lupu, F., Bellvé, A.R., Efstratiadis A. (1996). Effects of an IGF-I gene null mutation on mouse reproduction. Mol. Endocrinol., 10: 903–918.10.1210/mend.10.7.8813730
- Behl R., Kaul R. (2002). Insulin like growth factor 1 and regulation of ovarian function in mammals. Indian J. Exp. Biol., 40: 25–30.
- Bielańska-Osuchowska Z. (2006). Oogenesis in pig ovaries during the prenatal period: ultrastructure and morphometry. Reprod. Biol., 6: 161–193.
- Blicharski T., Tomaszewsk, E., Dobrowolski P., Hułas-Stasiak M., Muszyński S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS One, 12, e0179693.10.1371/journal.pone.0179693547231628617846
- Bradford M.M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-die binding. Anal. Biochem., 72: 248–254.10.1016/0003-2697(76)90527-3
- Chan K.A., Tsoulis M.W., Sloboda D.M. (2015). Early-life nutritional effects on the female reproductive system. J. Endocrinol., 224: R45–R62.10.1530/JOE-14-0469
- Childs A.J., Kinnell H.L., Collins C.S., Hogg K.R., Bayne A.L., Green S.J., McNeilly A.S., Anderson R.A. (2010). BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis. Stem Cells, 28: 1368–1378.10.1002/stem.440
- Cieślak D., Nieradka-Iwanicka B. (2018). β-Hydroxy- β-methylbutyrate (HMB) supplementation during pregnancy and perinatal period in animals studies and possible application in humans. J. Educ. Health Sport, 8: 11–18.
- da Cunha E.V., de Souza G.B., Passos J.R.S., Silva A.W.B., Dau A.M., Saraiva M.V.A., Lobo R.N.B., Silva J.R.V. (2017). Effects of bone morphogenetic protein 4 (BMP4) on in vitro development and survival of bovine preantral follicles enclosed in fragments ovarian tissue. Zygote, 25: 256–264.10.1017/S0967199417000089
- Doneda L., Klinger F.G., Larizza L., De Felici M. (2002). KL/KIT co-expression in mouse fetal oocytes. Int. J. Dev. Biol., 46: 1015–1021.
- Driancourt M.A., Reynaud K., Cortvrindt R., Smitz J. (2000). Roles of KIT and KIT LIGAND in ovarian function. Rev. Reprod., 5: 143–152.10.1530/ror.0.0050143
- Dupont C., Cordier A.G., Junien C., Mandon-Pépin B., Levy R., Chavatte-Palmer P. (2012). Maternal environment and the reproductive function of the offspring. Theriogenology, 78: 1405–1414.10.1016/j.theriogenology.2012.06.016
- Evans A.C., Mossa F., Walsh S.W., Scheetz D., Jimenez-Krassel F., Ireland J.L., Smith G.W., Ireland J.J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reprod. Domest. Anim., 47 Suppl 4: 31–37.10.1111/j.1439-0531.2012.02052.x
- Flummer C., Kristensen N.B., Theil P.K. (2012). Body composition of piglets from sows fed the leucine metabolite β-hydroxy-β-methylbutyrate in late gestation. J. Anim. Sci., 90: 442–444.10.2527/jas.53923
- Gospodarowicz D., Bialecki H. (1979). Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine, and human origin. Endocrinology, 104: 757–764.10.1210/endo-104-3-757
- Høyer P.E., Byskov A.G., Møllgård K. (2005). Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol. Cell Endocrinol., 234: 1–10.10.1016/j.mce.2004.09.012
- Hułas-Stasiak M., Jakubowicz-Gil J., Dobrowolski P., Tomaszewska E., Muszyński S. (2019). Maternal β-hydroxy-β-methylbutyrate (HMB) supplementation during pregnancy affects early folliculogenesis in the ovary of newborn piglets. Theriogenology, 128: 91–100.10.1016/j.theriogenology.2019.02.003
- Hussein M.R. (2005). Apoptosis in the ovary: molecular mechanisms. Hum. Reprod., 11: 162–178.10.1093/humupd/dmi001
- Hut K.J., McLaughlin E.A., Holland M.K. (2006). Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol. Hum. Reprod., 12: 61–69.10.1093/molehr/gal010
- Jin X., Han C.S., Yu F.Q., Wei P., Hu Z.Y., Liu Y.X. (2004). Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol. Reprod. Dev., 70: 82–90.10.1002/mrd.20142
- Kang J.S., Lee C.J., Lee J.M., Rha J.Y., Song K.W., Park M.H. (2003). Follicular expression of c-Kit/SCF and inhibin-alpha in mouse ovary during development. J. Histochem. Cytochem., 51: 1447–1458.10.1177/002215540305101105
- Kezele, P.R., Nilsson, E.E., Skinner, M.K. (2002). Insulin but not insulin-like growth factor-1 promotes the primordial to primary follicle transition. Mol. Cell. Endocrinol., 192: 37–43.10.1016/S0303-7207(02)00114-4
- Krawczyk A., Rycerz K., Jaworska-Adamu J., Tomaszewska E., Dobrowolski P. (2016). Calretinin expression in hippocampus of mouse offspring from dams treated with β-hydroxy-β-methylbutyrate. Med. Weter., 72: 423–429.10.21521/mw.5535
- Lavranos T.C., Rodgers H.F., Bertoncello I., Rodgers R.J. (1994). Anchorage-independent culture of bovine granulosa cells: The effects of basic fibroblast growth factor and dibutyryl cAMP on cell division and differentiation. Exp. Cell Res., 211: 245–251.10.1006/excr.1994.1084
- Lu C.L., Yan J., Zhi X., Xia X., Wang T.R., Yan L.Y., Yu Y., Ding T., Gao J.M., Li R., Qiao J. (2015). Basic fibroblast growth factor promotes macaque follicle development in vitro. Reproduction, 149: 425–433.10.1530/REP-14-0557
- Martins F.S., Saraiva M.V.A., Celestino J.J.H., Bruno J.B., Almeida A.P., Cunha R.M.S., Silva J.R.V., Campello C.C., Lucci C.M., Matos M.H.T., Figueiredo J.R. (2010). Expression of protein and mRNA encoding insulin growth factor-I (IGF-I) in goat ovarian follicles and the influence of IGF-I on in vitro development and survival of caprine preantral follicles. Anim. Reprod., 7: 349–361.
- Monniaux D., Pisselet C. (1992). Control of proliferation and differentiation of ovine granulosa cells by insulin-like growth factor-I and follicle-stimulating hormone in vitro. Biol. Reprod., 46: 109–111.10.1095/biolreprod46.1.109
- Morita Y., Manganaro T.F., Tao X.J., Martimbeau S., Donahoe P.K., Tilly J.L. (1999). Requirement for phosphatidylinositol-3’-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology, 140: 941–949.10.1210/endo.140.2.6539
- Morita Y., Tilly J.L. (1999). Oocyte apoptosis: like sand through and hourglass. Dev. Biol., 213: 1–17.10.1006/dbio.1999.9344
- Nilsson E., Parrott J.A., Skinner M.K. (2001). Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis. Mol. Cell. Endocrinol., 175: 123–130.10.1016/S0303-7207(01)00391-4
- Nilsson E.E., Kezele P., Skinner M.K. (2002). Leukemia inhibitory factor (LIF) promotes the primordial to primary follicle transition in rat ovaries. Mol. Cell. Endocrinol., 188: 65–73.10.1016/S0303-7207(01)00746-8
- Nilsson E.E., Skinner M.K. (2003). Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biol. Reprod., 69: 1265–1272.10.1095/biolreprod.103.018671
- Nilsson E.E., Skinner M.K. (2004). Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition. Mol. Cell. Endocrinol., 214: 19–25.10.1016/j.mce.2003.12.001
- NRC, National Research Council (2012). Nutrient Requirements of Swine.National Academy Press,Washington, USA, 11th ed., pp.420.
- Ortega S., Ittmann M., Tsang S.H., Erlich M., Basilico C. (1998). Neuronal defects and wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci., USA 95: 5672–5677.10.1073/pnas.95.10.5672
- Parrot J.A., Skinner M.K., (1999). Kit ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology, 140: 4262–4271.10.1210/endo.140.9.6994
- Pedersen T., Peters H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. Reproduction, 17: 555–557.10.1530/jrf.0.0170555
- Poljicanin A., Filipovic N., Vukusic Pusic T., Soljic V., Caric A., Saraga-Babic M., Vukojevic K. (2015). Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma. Acta Histochem., 117: 468–476.10.1016/j.acthis.2015.01.004
- Quennell J.H., Stanton J.A.L., Hurst P.R. (2004). Basic fibroblast growth factor expression in isolated small human ovarian follicles. Mol. Hum. Reprod., 10: 623–628.10.1093/molehr/gah083
- Resnick J.L., Ortiz M., Keller J.R., Donovan P.J. (1998). Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol. Reprod., 59: 1224–1229.10.1095/biolreprod59.5.1224
- Reynaud K., Cortvrindt R., Smitz J., Driancourt M.A. (2000). Effects of Kit Ligand and anti-Kit antibody on growth of cultured mouse preantral follicles. Mol. Reprod. Dev., 56: 483–494.10.1002/1098-2795(200008)56:4<483::AID-MRD6>3.0.CO;2-O
- Roberts R.D., Ellis R.C.L. (1999). Mitogenic effects of fibroblast growth factors on chicken granulosa cell and theca cells in vitro. Biol. Reprod., 61: 1387–1392.10.1095/biolreprod61.6.1387
- Ross A. J., Tilman C., Yao H., MacLaughlin D., Capela B. (2003). AMH induces mesonephric cell migration in XX gonads. Mol. Cell. Endocrinol., 211: 1–7.10.1016/j.mce.2003.09.021
- Shimizu T., Yokoo M., Miyake Y., Sasada H., Sato E. (2004). Differential expression of bone morphogenetic protein 4-6 (BMP-4,5 and 6) and growth differentation factor-9 (GDF-9) during ovarian development in neonatal pigs. Domest. Anim. Enocrinol., 27: 397–405.10.1016/j.domaniend.2004.04.001
- Stubbs S.A., Webber L.J., Stark J., Rice S., Margara R., Lavery S., Trew G.H., Hardy K., Franks S. (2013). Role of insulin-like growth factors in initiation of follicle growth in normal and polycystic human ovaries. J. Clin. Endocrinol. Metab., 98: 3298–3305.10.1210/jc.2013-1378
- Świetlicka I., Muszyński S., Tomaszewska E., Dobrowolsk, P., Kwaśniewska A., Świetlicki M., Skic A., Gołacki K. (2016). Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An Atomic Force Microscopy study. Arch. Oral Biol., 70: 24–31.10.1016/j.archoralbio.2016.06.001
- Tatara M.R., Śliwa E., Krupski, W. (2007). Prenatal programming of skeletal development in the offspring: effects of maternal treatment with β-hydroxy-β-methylbutyrate (HMB) on femur properties in pigs at slaughter age. Bone, 40: 1615–1622.10.1016/j.bone.2007.02.018
- Tingen C., Kim A., Woodruf, T.K. (2009). The primordial pool of follicles and nest breakdown in mammalian ovaries. Mol. Hum. Reprod., 15: 795–803.10.1093/molehr/gap073
- van Wezel I.L., Umapathysivam K., Tilley W.D., Rodgers R.J. (1995). Immunohistochemical localization of basic fibroblast growth factor in bovine ovarian follicles. Mol. Cell. Endocrinol., 115: 133–140.10.1016/0303-7207(95)03678-4
- Wan H.F., Zhu J.T., Shen Y., Xiang X., Yin H.J., Fang Z.F., Che L.Q., Lin Y., Xu S.Y., Feng B., Wu D. (2016a). Effects of dietary supplementation of β-hydroxy-β-methylbutyrate on sow performance and mRNA expression of myogenic markers in skeletal muscle of neonatal piglets. Reprod. Domest. Anim., 51: 134–142.10.1111/rda.1265726698926
- Wan H., Zhu J., Su G., Liu Y., Hua L., Hu L., Wu C., Zhang R., Zhou P., Shen Y., Lin Y., Xu S., Fang Z., Che L., Feng B., Wu D. (2016b). Dietary supplementation with β-hydroxy-β-methylbutyrate calcium during the early postnatal period accelerates skeletal muscle fiber growth and maturity in intra-uterine growth-retarded and normal-birth-weight piglets. Br. J. Nutr., 115: 1360–1309.10.1017/S000711451600046526917333
- Wan H., Zhu J., Wu C., Zhou P., Shen Y., Lin Y., Xu S., Che L., Feng B., Li J., Fang Z., Wu D. (2017). Transfer of β-hydroxy-β-methylbutyrate from sows to their offspring and its impact on muscle fibre type transformation and performance in pigs. J. Anim. Sci. Biotechnol., 8: 2.10.1186/s40104-016-0132-6
- Wang T., Yan L., Yan J., Lu C., Xia X., Yin T.L., Zhu X.H., Gao J.M., Ding T., Hu W.H., Guo H.Y., Li R., Qiao J. (2014). Basic fibroblast growth factor promotes the development of human ovarian early follicle during growth in vitro. Hum. Reprod., 29: 568–576.10.1093/humrep/det465
- Wilson G.J., Wilson J.M., Manninen A.H. (2008). Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: a review. Nutr. Metab., 5: 1.10.1186/1743-7075-5-1
- Wilson J.M., Fitschen P.J., Campbell B., Wilson G.J., Zanchi N., Taylor L. Wilborn C., Kalman D.S., Stout J.R., Hoffman J.R., Ziegenfuss T.N., Lopez H.L., Kreider R.B., Smith-Ruan A.E., Antonio J. (2013). International Society of Sports Nutrition Position Stand: beta-hydroxy-beta-methylbutyrate (HMB). J. Int. Soc. Sports Nutr., 10: 6.10.1186/1550-2783-10-6
- Yamamoto S., Konishi I., Nanbu K., Komatsu T., Mandai M., Kuroda H., Matsushita K., Mori T. (1997). Immunohistochemical localization of basic fibroblast growth factor (bFGF) during folliculogenesis in the human ovary. Gynecol. Endocrinol., 11: 223–230.10.3109/09513599709152538
- Zhao J., Tavene M.A., Van Der Weijden G.C., Bevers M.M., Van Den Hurk R. (2001). Insulin-like growth factor-I (IGF-I) stimulates the development of cultured rat pre-antral follicles. Mol. Reprod. Develop., 58: 287–296.10.1002/1098-2795(200103)58:3<287::AID-MRD7>3.0.CO;2-G