Alan C., Jung M.D, Douglas S., Paauw M.D. (1998). Diagnosing HIV-related Disease using the CD4 Count as a guide. J. Gen. Intern. Med., 13:131-136.10.1046/j.1525-1497.1998.00031.x
Almaw G., Molla W., Melaku A. (2012). Incidence rate of clinical bovine mastitis in selected smallholder dairy farms in Gondar Town in Ethiopia. Ethiop. Vet. J., 16(1): 93–99.10.4314/evj.v16i1.8
Ameh J.A., Tari L.S. (2000). Observation on the prevalence of caprine mastitis in relation to predisposing factors in Maiduguri. Small Rumin. Res., 35: 1-5.10.1016/S0921-4488(99)00047-4
Ateya A.I., El-Seady Y.Y., Atwa S.M., Merghani B.H., Sayed N.A. (2016). Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. GENETIKA, 48(1): 199-210.10.2298/GENSR1601199A
Bachaya H.A., Raza, M.A., Murtaza, S., Akbar, I.U.R. (2011). Subclinical Bovine Mastitis in Muzaffar Garh District of Punjab, Pakistan. J. Anim. Plant Sci., 21: 16-19.
Banos G., Wall E., Coffey M., Bagnall, A., Gillespie S., Russell G., McNeilly T. (2013). Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity. PLoS ONE, 8(6): 65766.10.1371/journal.pone.0065766
Bansal B.K., Hamann, J., Grabowski, T.N., Singh, K.B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy Res., 72(2): 144–152.10.1017/S0022029905000798
Bialecki E., Macho F. E., Ivanov S., Paget C., Fontaine J. (2011) Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 6: e26919.10.1371/journal.pone.0026919
Bilal M.Q., Iqbal M.U., Muhammad G., Avais M., Sajid M.S. (2004). Factors affecting the prevalence of clinical mastitis in buffaloes around Faisalabad District. Pak. Intern. J. Agri. Bio., 6(1): 185-187.
Boonyayatra S., Chaisri W. (2005). Incidence and prevalence of sub-clinical mastitis in smallholder dairy farms of Chiang Mai Province, Thailand. Chiang Mai Vet. J., 2: 25–30.
Boscariol R., Pleasance J., Piedrafita D.M., Raadsma H.W., Spithill T.W. (2006). Identification of two allelic forms of ovine CD4 exhibiting a Ser183/Pro183 polymorphism in the coding sequence of domain 3. Vet. Immunol. Immunopathol., 113(3-4): 305-312.10.1016/j.vetimm.2006.05.015
Brodzki P., Kostro A., Brodzki W., Wawron J., Marczuk Kurek Ł. (2015). Inflammatory cytokines and acutephase proteins concentrations in the peripheral blood and uterus of cows that developed endometritis during early postpartum. Theriogenology, 84:11-18.10.1016/j.theriogenology.2015.02.006
Burton J.L., Erskine R.J. (2003). Immunity and mastitis some new ideas for an old disease. Vet. Clin. Food Anim. J., 19(1): 1-45.10.1016/S0749-0720(02)00073-7
Burvenich C., Van M., Mehrzad J., Diez-Fraile A., Duchateau L. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34:521-564.10.1051/vetres:2003023
Cao D., Jing X., Wang X., Liu H., Chen D. (2012). Dynamics of CD4+ lymphocytes in mouse mammary gland challenged with Staphylococcus aureus. Asian J. Anim. Vet. Adv., 7: 1041-1048.10.3923/ajava.2012.1041.1048
Coulon J.B., Gasqui P., Barnouin J., Oliier A., Pradel P., Pomiès D. (2002). Effect of mastitis and related germs on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res., 51(5): 383–393.10.1051/animres:2002031
Dekkers J.C.M., Hospital F. (2002).The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Gen., 3: 22–3210.1038/nrg701
Fareed K.S., Khalid H.M., Allah B.K., Shajeela A., Muhammad I.B., Mehmood-ul-Hasan, Muhammad A., Taseer A.K. (2015). Prevalence and economic losses of reproductive disorders and mastitis in buffaloes at Karachi, Pakistan. Indian J. Anim. Res., 389: 1-410.18805/ijar.8602
Fourichon C., Seegers H., Malher X. (2000). Effect of disease on reproduction in the dairy cow: a meta-analysis. Theriogenology, 53: 1729–1759.10.1016/S0093-691X(00)00311-3
Gebreyohannes Y.T., Regassa F.G., Kelay B. (2010). Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health Prod., 42: 925-931.10.1007/s11250-009-9509-2
Gera S., Guha A. (2011). Assessment of acute phase proteins and nitric oxide as indicator of subclinical mastitis in Holstein × Haryana cattle. Ind. J. Anim. Sci., 81(10): 1029–1031.
Glass E.J., Preston P.M., Springbett A., Craigmile S., Kirvar E., Wilkie G., Brown C.D. (2005). Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. Int. J. Para., 35(3):337-347.10.1016/j.ijpara.2004.12.006
Goddard M.E., Hayes B.J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Gen., 10(6): 381-391.10.1038/nrg2575
Gustafsson K., Germana S., Sundt T.M., Sachs D.H., LeGuern, C. (1993). Extensive allelic polymorphism in the CDR2-like region of the miniature swine CD4 molecule. J. Immunol., 151(3): 1365-1370.10.4049/jimmunol.151.3.1365
Haas Y.D, Ouweltjes W., Napel J., Windig J., Jong G. (2008). Alternative traits for somatic cell counts as mastitis-indicators for genetic selection. J. Dairy Sci., 91: 2501-2511.10.3168/jds.2007-0459
Hagnestam-Nielsen C., Ostergaard S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal, 3(2):315-328.10.1017/S1751731108003352
Halasa T., Huijps K., Osteras O., Hogeveen H. (2007). Economic effects of bovine mastitis and mastitis management: A review. Vet. Quarterly, 29(1): 18–31.10.1080/01652176.2007.9695224
He Y., Chu Q., Ma P., Wang Y., Zhang Q., Sun D., Zhang Y., Yu Y. and Zhang Y., 2011. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. dairy res., 78(2): 242-249.10.1017/S002202991100014821435309
Hennig B.J., Velez-Edwards D.R., Van Der Loeff M.F.S., Bisseye C., Edwards T.L., Tacconelli A., Novelli G., Aaby P., Kaye S., Scott W.K., Jaye A. (2011). CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa. J.A.I.D.S., 56(1):1-8.10.1097/QAI.0b013e3181f638ed
Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Wiggans G.R., VanRaden P.M., Lewin H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physio. Genomics, 1(3):165-175.10.1152/physiolgenomics.1999.1.3.165
Hinds D.A., Stuve L.L., Nilsen G.B., Halperin E., Eskin E., Ballinger D.G., Frazer K.A., Cox D.R. (2005). Whole genome patterns of common DNA variation in three human populations. Science, 307:1072–1079.10.1126/science.1105436
Hinrichs D., Stamer E., Junge W., Kalim E. (2005). Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J. Dairy Sci, 88:2260-2268.10.3168/jds.S0022-0302(05)72902-7
Hogan J. (2005). Human health risks associated with high SCC milk. Proceedings of the British Mastitis Conference, 2005. Stoneleigh, Warwickshire, UK, 12 October 2005. Inst.Anim.Health, 21–124 pp.
Hogeveen H., Huijps, K., Lam T.J.G.M. (2011). Economic aspects of mastitis: New developments. New Zealand Vet. J., 59(1): 16–23.10.1080/00480169.2011.547165
Islam M. A., Islam M. Z., Rahman M. S., Islam M. T. (2011). Prevalence of subclinical mastitis in dairy cows in selected areas of Bangladesh. Bangladesh J. Vet. Med., 9 (1): 73-78.10.3329/bjvm.v9i1.11216
Joshi S., Gokhale S. (2006). Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Ann. New York Acad. Sci., 1081: 74–83.10.1196/annals.1373.007
Katsande S., Matope G., Ndengu M., Pfukenyi D.M. (2013). Prevalence of mastitis in dairy cows from small lholder farms in Zimbabwe. J. Vet. Res., 80(1): E1–7. [Online. doi: 10.4102/ojvr.v80i1.523.]10.4102/ojvr.v80i1.52323718150
Kehrli M.E., Shuster D.E. (1994). Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci., 77: 619-627.10.3168/jds.S0022-0302(94)76992-7
Kitchen B.J. (1981). Review of the progress of dairy science - bovine mastitis - milk compositional changes and related diagnostic-tests. J. Dairy Res., 48(1): 167–188.10.1017/S0022029900021580
Koivula M., Mantysaari E.A., Negussie E., Serenius T. (2005). Genetic and Phenotypic Relationships among Milk Yield and Somatic Cell Count Before and After Clinical Mastitis. J. Dairy Sci., 88(2):827–833.10.3168/jds.S0022-0302(05)72747-8
Kolbehdari D., Wang Z., Grant J.R., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P., Moore S.S. (2009). A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet., 126: 216–227.10.1111/j.1439-0388.2008.00793.x
Koskinen R., Salomonsen J., Tregaskes C.A., Young J.R., Goodchild M., Bumstead N. Vainio O. (2002). The chicken CD4 gene has remained conserved in evolution. Immunogenetics, 54(7):520-525.10.1007/s00251-002-0490-4
Kozacinski L.M., Iladziosmanovi T., Majic I.K., Jole C.Z. (2002). Relationships between the results of mastitis tests, somatic cell counts and the detection of mastitis agents in milk. Paraxis Vet., 57: 255-260.
Kurup M.P.G. (2001). Smallholder dairy production and marketing in India. Opportunities and constraints. In: D. Rangnekar and W. Thorpe (editors). Smallholder dairy production and marketing –Opportunities and constraints. Proceedings of a South– South workshop held at National Dairy Development Board (NDDB) Anand, India, 13–16 March 2001. ILRI, Nairobi, Kenya.
Leung R.K., Thomson K., Gallimore A., Jones E., Van den B.M., Sierro S. et al., (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol., 2(12):1167–73. [doi:10.1038/ni733]10.1038/ni73311694883
Marie H., Gitte K., Carsten S., Larsen G.P., Court P., Niels O., Jan G. (2013). CD4 Decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV. Clinical Infectious Diseases, 57(2):314-321.10.1093/cid/cit232
Mattapallil J.J. et al. (2005). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature, 434:1093–1097.10.1038/nature03501
Megersa B., Chala T., Abunna F., Regassa A., Berhanu M., Etana D. (2010). Occurrence of mastitis and associated risk factors in lactating goats under pastoral management in Borana, Southern Ethiopia. Trop. Anim. Hlth. Production, 42: 1249-1255.10.1007/s11250-010-9557-7
Mellenberger R. Dept. of Animal Sciences, Michigan State University and Carol, J. Roth, Dept. of Dairy Science, University of Wisconsin-Madison April, 2000.
Memon M.I., Mirbahar K.B.,. Memon M.R, Akhtar N., Soomoro S.A., Dewani P. (1999). A study on the etiology of subclinical mastitis in buffaloes. Pakistan J. Agri. Eng. Vet. Sci., 15: 34-36.
Miyagawa F., Nakamura Y., Miyashita K., Iioka H., Himuro Y., Ogawa K., Nishimura C., Nishikawa M., Mitsui Y., Ito Y., Ommori R. (2016). Preferential expression of CD134, an HHV-6 cellular receptor, on CD4 T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Dermatological Sci., 83(2): 151-154.10.1016/j.jdermsci.2016.05.001
Moges N., Hailemariam T., Fentahun T., Chaine M., Melaku A. (2012). Bovine mastitis and associated risk factors in smallholder lactating dairy farms in Hawassa, Southern Ethiopia. Global Veterinarian, 9(4): 441–446.
Muhasin A.V.N., Kumar A., Rahim A., Sebastian R., Mohan V., Dewangan P.P.M. (2014). An overview on single nucleotide polymorphism studies in mastitis research. Vet. world, 7(6): 416-421. [doi: 10.14202/vetworld.2014.416-421]10.14202/vetworld.2014.416-421
Mukherji B.I.J.A.Y., Guha A., Chakraborty N.G., Sivanandham M., Nashed A.L., Sporn J.R., Ergin M.T. (1989). Clonal analysis of cytotoxic and regulatory T cell responses against human melanoma. J. Exp. Med., 169(6): 1961-1976.10.1084/jem.169.6.1961
Nam H.M., Kim J.M., Lim S.K., Jang K.C., Jung S.C. (2010). Infectious aetiologies of mastitis on Korean dairy farms during 2008. J. RVSC., 88: 372-4.10.1016/j.rvsc.2009.12.008
Ndegwa E.N., Mulei C.M., Munyna S.J. (2000). The prevalence of subclinical mastitis in dairy goats in Kenya. J. South Afr. Vet. Assoc., 71: 25-27.10.4102/jsava.v71i1.672
Ojo O.E., Oyekunle M.A., Ogunleye A.O., Otesile E.B. (2009). Escherichi coli, O157:H7 in Food animals in part of south-western Nigeria. Prevalence and invitro antimicrobial susceptibility. Trop. Vet., 26 (3): 23-30.
Oliver S., González R., Hogan J., Jayarao B., Owens W. (2004). Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality, 4th Ed, National Mastitis Council, Verona, WI, USA, 1-28 pp.
Oviedo-Boyso J., Valdez-Alarcón J., Cajero-Juárez M., Ochoa-Zarzosa, A., López-Meza J., Bravo-Patiño A., Baizabal-Aguirre V. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. of Infection, 54(4):399-409.10.1016/j.jinf.2006.06.010
Oyugi J.O., Vouriot F.C., Alimonti J., Wayne S., Luo M., Ao Z., Yao X., Sekaly R.P., Elliott L.J., Simonsen J.N. (2009). A common CD4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers. The J. infect. dis., 199(9), pp.1327-1334.10.1086/59761619301975
Pant S.D., Schenkel F.S., Baca I.L., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421. doi:10.1186/1471-2164-8421.10.1186/1471-2164-8-421
Pirzada M., Malhi K.K., Kamboh A.A., Rind R., Abro S.H., Lakho S.A., Bhutto K.R., Huda N. (2016). Prevalence of subclinical mastitis in dairy goats caused by bacterial species. J. Anim. Health Prod. 4(2): 55-59.10.14737/journal.jahp/2016/4.2.55.59
Rahman A., Islam M., Rony A., Sharmin, Islam M. (2010). PREVALENCE AND RISK FACTORS OF MASTITIS IN LACTATING DAIRY COWS AT BAGHABARI MILK SHED AREA OF SIRAJGANJ. Bangladesh J. Vet. Med., 8:157-162. [10.3329/bjvm.v8i2.11200]10.3329/bjvm.v8i2.11200
Rollin E., Dhuyvetter K.C., Overton M.W. (2015). The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Vet. Med., 122(3):257-6410.1016/j.prevetmed.2015.11.00626596651
Rothschild M.F., Skow L., Lamont S.J. (2000). The major Histocompatibility Complex and it’s role in disease resistance and immune responsiveness, in: Axford R.F.E., Bishop S.C., Nicholas F.W., Owen J.B (Eds.), Breeding for disease resistance in farm animals, CAB International, 2000, pp. 73–105.
Rupp R., Boichard D. (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci., 82:2198–2204.10.3168/jds.S0022-0302(99)75465-2
Sammiullah M.U.D., Syed M. A., Khan M., (2000). Frequency and causes of culling and mortality in Holstein Friesian cattle in NWFP (Pakistan). J. Anim. Hlth. Prod., 20: 22-24.
Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res., 34: 475–491.10.1051/vetres:2003027
Sharma N., Singh N.K., Bhadwal M.S., (2011). Relationship of somatic cell count and mastitis: An overview. Asian Austral. J. Anim. Sci., 24(3): 429–438.10.5713/ajas.2011.10233
Shitandi A., Anakalo G., Galgalo T., Mwangi M. (2004). Prevalence of bovine mastitis amongst smallholder dairy herds in Kenya. Isr. J. Vet. Med., 59:1–2.
Smith D.K., Neal J.J., Holmberg S.D. (1993). Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The Centers for Disease Control Idiopathic CD4 T-lymphocytopenia Task Force. N. Engl. J. Med., 328(6):373-379.10.1056/NEJM199302113280601
Soltys J., Quinn M.T. (1999). Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infect. Immun., 67(12):6293-6302.10.1128/IAI.67.12.6293-6302.1999
Song M., He Y., Zhou H., Zhang Y., Li X., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6:29390. doi: 10.1038/srep29390.10.1038/srep29390494416627411928
Sorensen L.P., Mark T., Madsen P., Lund M.S. (2009). Genetic correlations between pathogen specific mastitis and somatic cell count in Danish Holsteins. J. Dairy Sci., 92(7): 3457-3471.10.3168/jds.2008-1870
Stear M.J., Bisshop S.C., Mallard B.A., Raadsma H. (2001). The sustainability, feasibility and desirability of breeding livestock for disease resistance. Vet. Sci., 71(1):1-7.10.1053/rvsc.2001.0496
Swanson K.M., Stelwagen K., Davis S.R., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117-129.10.3168/jds.2008-1382
Taylor B.C., Keefe R.G., Dellinger J.D., Nakamura Y., Cullor J.S., Stott J.L. (1997). T cell populations and cytokine expression in milk derived from normal and bacteria-infected bovine mammary glands. Cellular immunology, 182(1): 68-76.10.1006/cimm.1997.1215
Uddin M.N., Uddin M.B., Al-Mamun M., Hassan M.M., Khan M.M.H. (2012). Small Scale dairy farming for livelihoods of rural farmers: constraint and prospect in Bangladesh. J. Anim. Sci. Adv., 2(6): 543–550.
Usman T., Wang Y., Song M., Wang X., Dong Y., Liu C., Wang S., Zhang Y., Xiao W., Yu Y. (2017). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. Genet. Mol. Res., 16(4).10.4238/gmr16039859
Usman T., Yu Y., Zhai L., Liu C., Wang X., Wang Y. (2016). Association of CD4 SNPs with fat percentage of Holstein cattle. Genet. Mol. Res., 15(3).10.4238/gmr.1503869727706731
Usman T., Yachun W., Minyan S., Xiao W., Yichun D., Chao L., Shuxiang W., Yi Z., Wei X., Ying Y. (2018). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. GMR, 17(1).10.4238/gmr16039859
Viegher D.E.S., Barkema H.W., Stryhn. H., Opsomer G., De Kruif A. (2005). Impact of early lactation somatic cell count in heifers on milk yield over the first lactation. J. Dairy Sci., 88: 938-47.10.3168/jds.S0022-0302(05)72761-2
Wang X.S., Zhang Y., He Y.H., Ma P.P., et al. 2013. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genetics and Molecular Research, 12: 6228-39.
Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12(4): 6228-6239.10.4238/2013.December.4.10
Wang, Z., Hong, J., Sun, W., Xu, G., Li, N., Chen, X., Liu, A., Xu, L., Sun, B. and Zhang, J.Z., 2006. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25–T cells to CD4+ Tregs. The Journal of clinical investigation, 116(9), pp.2434-2441.10.1172/JCI25826153387316906223
Winter P., Colditz I. G. (2002). Immunological responses of the lactating ovine udder following experimental challenge with Staphylococcus epidermidis. Vet. Immunol. Immunopathol., 89(2):57–65.10.1016/S0165-2427(02)00184-8
Xu, Y., Weatherall, C., Bailey, M., Alcantara, S., De Rose, R., Estaquier, J., Wilson, K., Suzuki, K., Corbeil, J., Cooper, D.A. and Kent, S.J., 2013. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. Journal of virology, 87(7), pp.3760-3773.10.1128/JVI.02497-12362422423325697
Yu Y., Rabinowitz R., Steinitz M., Schlesinger M. (2002). Correlation between the expression of CD4 and the level of CD4 mRNA in human B-cell lines. Cell Immunol., 215: 78–86.10.1016/S0008-8749(02)00003-5
Zou Y.R., Sunshine M.J., Taniuchi I., Hatam F., Killeen N., Littman D.R. (2001). Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet., 29(3):332–6.10.1038/ng750