References
- Alan C., Jung M.D, Douglas S., Paauw M.D. (1998). Diagnosing HIV-related Disease using the CD4 Count as a guide. J. Gen. Intern. Med., 13:131-136.10.1046/j.1525-1497.1998.00031.x
- Alhussien M.N., Dang A.K. (2018). Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World, 11(5): 562-577.10.14202/vetworld.2018.562-577
- Almaw G., Molla W., Melaku A. (2012). Incidence rate of clinical bovine mastitis in selected smallholder dairy farms in Gondar Town in Ethiopia. Ethiop. Vet. J., 16(1): 93–99.10.4314/evj.v16i1.8
- Almeida R.A., Calvinho L.F., Oliver, S.P. (1998). Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Micro., 61(1-2): 93-110.10.1016/S0378-1135(98)00172-2
- Ameh J.A., Tari L.S. (2000). Observation on the prevalence of caprine mastitis in relation to predisposing factors in Maiduguri. Small Rumin. Res., 35: 1-5.10.1016/S0921-4488(99)00047-4
- Ateya A.I., El-Seady Y.Y., Atwa S.M., Merghani B.H., Sayed N.A. (2016). Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. GENETIKA, 48(1): 199-210.10.2298/GENSR1601199A
- Bachaya H.A., Raza, M.A., Murtaza, S., Akbar, I.U.R. (2011). Subclinical Bovine Mastitis in Muzaffar Garh District of Punjab, Pakistan. J. Anim. Plant Sci., 21: 16-19.
- Banos G., Wall E., Coffey M., Bagnall, A., Gillespie S., Russell G., McNeilly T. (2013). Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity. PLoS ONE, 8(6): 65766.10.1371/journal.pone.0065766
- Bansal B.K., Hamann, J., Grabowski, T.N., Singh, K.B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy Res., 72(2): 144–152.10.1017/S0022029905000798
- Bialecki E., Macho F. E., Ivanov S., Paget C., Fontaine J. (2011) Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 6: e26919.10.1371/journal.pone.0026919
- Bilal M.Q., Iqbal M.U., Muhammad G., Avais M., Sajid M.S. (2004). Factors affecting the prevalence of clinical mastitis in buffaloes around Faisalabad District. Pak. Intern. J. Agri. Bio., 6(1): 185-187.
- Boonyayatra S., Chaisri W. (2005). Incidence and prevalence of sub-clinical mastitis in smallholder dairy farms of Chiang Mai Province, Thailand. Chiang Mai Vet. J., 2: 25–30.
- Boscariol R., Pleasance J., Piedrafita D.M., Raadsma H.W., Spithill T.W. (2006). Identification of two allelic forms of ovine CD4 exhibiting a Ser183/Pro183 polymorphism in the coding sequence of domain 3. Vet. Immunol. Immunopathol., 113(3-4): 305-312.10.1016/j.vetimm.2006.05.015
- Bradley A.J., Green M.J. (2001). Etiology of clinical mastitis in six Somerset dairy herds. Vet. Res., 148: 683-686.10.1136/vr.148.22.683
- Brodzki P., Kostro A., Brodzki W., Wawron J., Marczuk Kurek Ł. (2015). Inflammatory cytokines and acutephase proteins concentrations in the peripheral blood and uterus of cows that developed endometritis during early postpartum. Theriogenology, 84:11-18.10.1016/j.theriogenology.2015.02.006
- Burton J.L., Erskine R.J. (2003). Immunity and mastitis some new ideas for an old disease. Vet. Clin. Food Anim. J., 19(1): 1-45.10.1016/S0749-0720(02)00073-7
- Burvenich C., Van M., Mehrzad J., Diez-Fraile A., Duchateau L. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34:521-564.10.1051/vetres:2003023
- Campbell J.R., Marshall R.T. (2016). Dairy Production and Processing: The Science of Milk and Milk Products: Waveland Press.
- Cao D., Jing X., Wang X., Liu H., Chen D. (2012). Dynamics of CD4+ lymphocytes in mouse mammary gland challenged with Staphylococcus aureus. Asian J. Anim. Vet. Adv., 7: 1041-1048.10.3923/ajava.2012.1041.1048
- Coulon J.B., Gasqui P., Barnouin J., Oliier A., Pradel P., Pomiès D. (2002). Effect of mastitis and related germs on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res., 51(5): 383–393.10.1051/animres:2002031
- Dekkers J.C.M., Hospital F. (2002).The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Gen., 3: 22–3210.1038/nrg701
- Detilleux J.C., (2002). Genetic factors affecting susceptibility of dairy cows to udder pathogens. Vet. Immunol. Immunopathol., 88 103–110.10.1016/S0165-2427(02)00138-1
- Dieser S.A., Vissio C., Lasagno M.C., Bogni C.I., Larriestra A.J., Odierno L.M. (2014). Prevalence of pathogens causing subclinical mastitis in Argentinean dairy herds. Pak. Vet. J., 34(1): 124-126.
- Faramarz N., (2008). Principles of Immunophenotyping, in Hematopathology.
- Fareed K.S., Khalid H.M., Allah B.K., Shajeela A., Muhammad I.B., Mehmood-ul-Hasan, Muhammad A., Taseer A.K. (2015). Prevalence and economic losses of reproductive disorders and mastitis in buffaloes at Karachi, Pakistan. Indian J. Anim. Res., 389: 1-410.18805/ijar.8602
- Feil R., Fraga M.F. (2012). Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Gen., 13(2): 97.10.1038/nrg3142
- Fourichon C., Seegers H., Malher X. (2000). Effect of disease on reproduction in the dairy cow: a meta-analysis. Theriogenology, 53: 1729–1759.10.1016/S0093-691X(00)00311-3
- Gebreyohannes Y.T., Regassa F.G., Kelay B. (2010). Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health Prod., 42: 925-931.10.1007/s11250-009-9509-2
- Gera S., Guha A. (2011). Assessment of acute phase proteins and nitric oxide as indicator of subclinical mastitis in Holstein × Haryana cattle. Ind. J. Anim. Sci., 81(10): 1029–1031.
- Gilmour A., Harvey J. (1990). Society for Applied Bacteriology Symposium Series. 19:147S166S.10.1111/j.1365-2672.1990.tb01805.x
- Glass E.J., Preston P.M., Springbett A., Craigmile S., Kirvar E., Wilkie G., Brown C.D. (2005). Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. Int. J. Para., 35(3):337-347.10.1016/j.ijpara.2004.12.006
- Goddard M.E., Hayes B.J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Gen., 10(6): 381-391.10.1038/nrg2575
- Gustafsson K., Germana S., Sundt T.M., Sachs D.H., LeGuern, C. (1993). Extensive allelic polymorphism in the CDR2-like region of the miniature swine CD4 molecule. J. Immunol., 151(3): 1365-1370.10.4049/jimmunol.151.3.1365
- Haas Y.D, Ouweltjes W., Napel J., Windig J., Jong G. (2008). Alternative traits for somatic cell counts as mastitis-indicators for genetic selection. J. Dairy Sci., 91: 2501-2511.10.3168/jds.2007-0459
- Hagnestam-Nielsen C., Ostergaard S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal, 3(2):315-328.10.1017/S1751731108003352
- Halasa T., Huijps K., Osteras O., Hogeveen H. (2007). Economic effects of bovine mastitis and mastitis management: A review. Vet. Quarterly, 29(1): 18–31.10.1080/01652176.2007.9695224
- Hameed K.G.A., Sender G., Korwin-Kossakowska A. (2007). Public health hazard due to mastitis in dairy cows. Anim. Sci. Pap. Rep., 25(2): 73–85.
- He Y., Chu Q., Ma P., Wang Y., Zhang Q., Sun D., Zhang Y., Yu Y. and Zhang Y., 2011. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. dairy res., 78(2): 242-249.10.1017/S002202991100014821435309
- Hennig B.J., Velez-Edwards D.R., Van Der Loeff M.F.S., Bisseye C., Edwards T.L., Tacconelli A., Novelli G., Aaby P., Kaye S., Scott W.K., Jaye A. (2011). CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa. J.A.I.D.S., 56(1):1-8.10.1097/QAI.0b013e3181f638ed
- Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Wiggans G.R., VanRaden P.M., Lewin H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physio. Genomics, 1(3):165-175.10.1152/physiolgenomics.1999.1.3.165
- Hinds D.A., Stuve L.L., Nilsen G.B., Halperin E., Eskin E., Ballinger D.G., Frazer K.A., Cox D.R. (2005). Whole genome patterns of common DNA variation in three human populations. Science, 307:1072–1079.10.1126/science.1105436
- Hinrichs D., Stamer E., Junge W., Kalim E. (2005). Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J. Dairy Sci, 88:2260-2268.10.3168/jds.S0022-0302(05)72902-7
- Hogan J. (2005). Human health risks associated with high SCC milk. Proceedings of the British Mastitis Conference, 2005. Stoneleigh, Warwickshire, UK, 12 October 2005. Inst.Anim.Health, 21–124 pp.
- Hogeveen H., (2005). Mastitis in dairy production: Current knowledge and future solutions. Book Type: Conference Proceeding. ISBN: 9789076998701. https://doi.org/10.3920/978-90-8686-550-5.10.3920/978-90-8686-550-5
- Hogeveen H., Huijps, K., Lam T.J.G.M. (2011). Economic aspects of mastitis: New developments. New Zealand Vet. J., 59(1): 16–23.10.1080/00480169.2011.547165
- Holmes C.W., Wilson G.F. (1984). Milk Production from Pastures. Butterworths of New Zealand. Wellington, New Zealand.
- Horejsi V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol. Rev., 191: 148–164. 36.10.1034/j.1600-065X.2003.00001.x
- International Dairy Federation. (1999). Suggested interpretation of mastitis terminology. Bulletin of the International Dairy Federation: 338, 3–26.
- Iraguha B., Hamudikuwanda H., Mushonga B., Kandiwa, E., Mpatswenumugabo J.P. (2017). Comparison of cow-side diagnostic tests for subclinical mastitis of dairy cows in Musanze district, Rwanda. J.S.A.V.A., 88:1464. https://doi.org/10.4102/jsava.v88i0.146410.4102/jsava.v88i0.1464613812428697611
- Islam M. A., Islam M. Z., Rahman M. S., Islam M. T. (2011). Prevalence of subclinical mastitis in dairy cows in selected areas of Bangladesh. Bangladesh J. Vet. Med., 9 (1): 73-78.10.3329/bjvm.v9i1.11216
- Jones G.M. (2006). Understanding the basics of mastitis. Virginia State University, USA. Virginia Cooperative Extension, Publication, 7:404-233.
- Joshi S., Gokhale S. (2006). Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Ann. New York Acad. Sci., 1081: 74–83.10.1196/annals.1373.007
- Karima G.A.H. (2013). Genetic basis of mastitis resistance in dairy cattle - a review. Ann. Anim. Sci., 13(4):663–673.10.2478/aoas-2013-0043
- Katsande S., Matope G., Ndengu M., Pfukenyi D.M. (2013). Prevalence of mastitis in dairy cows from small lholder farms in Zimbabwe. J. Vet. Res., 80(1): E1–7. [Online. doi: 10.4102/ojvr.v80i1.523.]10.4102/ojvr.v80i1.52323718150
- Kehrli M.E., Shuster D.E. (1994). Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci., 77: 619-627.10.3168/jds.S0022-0302(94)76992-7
- Kitchen B.J. (1981). Review of the progress of dairy science - bovine mastitis - milk compositional changes and related diagnostic-tests. J. Dairy Res., 48(1): 167–188.10.1017/S0022029900021580
- Klatzmann D. (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312:767–768.10.1038/312767a0
- Koivula M., Mantysaari E.A., Negussie E., Serenius T. (2005). Genetic and Phenotypic Relationships among Milk Yield and Somatic Cell Count Before and After Clinical Mastitis. J. Dairy Sci., 88(2):827–833.10.3168/jds.S0022-0302(05)72747-8
- Kolbehdari D., Wang Z., Grant J.R., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P., Moore S.S. (2009). A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet., 126: 216–227.10.1111/j.1439-0388.2008.00793.x
- Kono T., Korenaga H. (2013). Cytokine Gene Expression in CD4 Positive Cells of the Japanese Pufferfish, Takifugu rubripes. PLoS ONE, 8(6): e66364. [doi:10.1371/journal.pone.0066364]10.1371/journal.pone.0066364368888023823320
- Koskinen R., Salomonsen J., Tregaskes C.A., Young J.R., Goodchild M., Bumstead N. Vainio O. (2002). The chicken CD4 gene has remained conserved in evolution. Immunogenetics, 54(7):520-525.10.1007/s00251-002-0490-4
- Kozacinski L.M., Iladziosmanovi T., Majic I.K., Jole C.Z. (2002). Relationships between the results of mastitis tests, somatic cell counts and the detection of mastitis agents in milk. Paraxis Vet., 57: 255-260.
- Kurup M.P.G. (2001). Smallholder dairy production and marketing in India. Opportunities and constraints. In: D. Rangnekar and W. Thorpe (editors). Smallholder dairy production and marketing –Opportunities and constraints. Proceedings of a South– South workshop held at National Dairy Development Board (NDDB) Anand, India, 13–16 March 2001. ILRI, Nairobi, Kenya.
- Leung R.K., Thomson K., Gallimore A., Jones E., Van den B.M., Sierro S. et al., (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol., 2(12):1167–73. [doi:10.1038/ni733]10.1038/ni73311694883
- Marie H., Gitte K., Carsten S., Larsen G.P., Court P., Niels O., Jan G. (2013). CD4 Decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV. Clinical Infectious Diseases, 57(2):314-321.10.1093/cid/cit232
- Mattapallil J.J. et al. (2005). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature, 434:1093–1097.10.1038/nature03501
- Megersa B., Chala T., Abunna F., Regassa A., Berhanu M., Etana D. (2010). Occurrence of mastitis and associated risk factors in lactating goats under pastoral management in Borana, Southern Ethiopia. Trop. Anim. Hlth. Production, 42: 1249-1255.10.1007/s11250-010-9557-7
- Mellenberger R. Dept. of Animal Sciences, Michigan State University and Carol, J. Roth, Dept. of Dairy Science, University of Wisconsin-Madison April, 2000.
- Memon M.I., Mirbahar K.B.,. Memon M.R, Akhtar N., Soomoro S.A., Dewani P. (1999). A study on the etiology of subclinical mastitis in buffaloes. Pakistan J. Agri. Eng. Vet. Sci., 15: 34-36.
- Miyagawa F., Nakamura Y., Miyashita K., Iioka H., Himuro Y., Ogawa K., Nishimura C., Nishikawa M., Mitsui Y., Ito Y., Ommori R. (2016). Preferential expression of CD134, an HHV-6 cellular receptor, on CD4 T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Dermatological Sci., 83(2): 151-154.10.1016/j.jdermsci.2016.05.001
- Moges N., Hailemariam T., Fentahun T., Chaine M., Melaku A. (2012). Bovine mastitis and associated risk factors in smallholder lactating dairy farms in Hawassa, Southern Ethiopia. Global Veterinarian, 9(4): 441–446.
- Muhasin A.V.N., Kumar A., Rahim A., Sebastian R., Mohan V., Dewangan P.P.M. (2014). An overview on single nucleotide polymorphism studies in mastitis research. Vet. world, 7(6): 416-421. [doi: 10.14202/vetworld.2014.416-421]10.14202/vetworld.2014.416-421
- Mukherji B.I.J.A.Y., Guha A., Chakraborty N.G., Sivanandham M., Nashed A.L., Sporn J.R., Ergin M.T. (1989). Clonal analysis of cytotoxic and regulatory T cell responses against human melanoma. J. Exp. Med., 169(6): 1961-1976.10.1084/jem.169.6.1961
- Nam H.M., Kim J.M., Lim S.K., Jang K.C., Jung S.C. (2010). Infectious aetiologies of mastitis on Korean dairy farms during 2008. J. RVSC., 88: 372-4.10.1016/j.rvsc.2009.12.008
- Ndegwa E.N., Mulei C.M., Munyna S.J. (2000). The prevalence of subclinical mastitis in dairy goats in Kenya. J. South Afr. Vet. Assoc., 71: 25-27.10.4102/jsava.v71i1.672
- Ojo O.E., Oyekunle M.A., Ogunleye A.O., Otesile E.B. (2009). Escherichi coli, O157:H7 in Food animals in part of south-western Nigeria. Prevalence and invitro antimicrobial susceptibility. Trop. Vet., 26 (3): 23-30.
- Oliver S., González R., Hogan J., Jayarao B., Owens W. (2004). Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality, 4th Ed, National Mastitis Council, Verona, WI, USA, 1-28 pp.
- Oviedo-Boyso J., Valdez-Alarcón J., Cajero-Juárez M., Ochoa-Zarzosa, A., López-Meza J., Bravo-Patiño A., Baizabal-Aguirre V. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. of Infection, 54(4):399-409.10.1016/j.jinf.2006.06.010
- Oyugi J.O., Vouriot F.C., Alimonti J., Wayne S., Luo M., Ao Z., Yao X., Sekaly R.P., Elliott L.J., Simonsen J.N. (2009). A common CD4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers. The J. infect. dis., 199(9), pp.1327-1334.10.1086/59761619301975
- Pant S.D., Schenkel F.S., Baca I.L., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421. doi:10.1186/1471-2164-8421.10.1186/1471-2164-8-421
- Pirzada M., Malhi K.K., Kamboh A.A., Rind R., Abro S.H., Lakho S.A., Bhutto K.R., Huda N. (2016). Prevalence of subclinical mastitis in dairy goats caused by bacterial species. J. Anim. Health Prod. 4(2): 55-59.10.14737/journal.jahp/2016/4.2.55.59
- Rahman A., Islam M., Rony A., Sharmin, Islam M. (2010). PREVALENCE AND RISK FACTORS OF MASTITIS IN LACTATING DAIRY COWS AT BAGHABARI MILK SHED AREA OF SIRAJGANJ. Bangladesh J. Vet. Med., 8:157-162. [10.3329/bjvm.v8i2.11200]10.3329/bjvm.v8i2.11200
- Rivas A.L., Schwager S.J., González R.N., Quimby F.W., Anderson K.L. (2007). Multifactorial relationships between intramammary invasion by Staphylococcus aureus and bovine leukocyte markers. Can. J. Vet. Res., 71(2):135.
- Rollin E., Dhuyvetter K.C., Overton M.W. (2015). The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Vet. Med., 122(3):257-6410.1016/j.prevetmed.2015.11.00626596651
- Rothschild M.F., Skow L., Lamont S.J. (2000). The major Histocompatibility Complex and it’s role in disease resistance and immune responsiveness, in: Axford R.F.E., Bishop S.C., Nicholas F.W., Owen J.B (Eds.), Breeding for disease resistance in farm animals, CAB International, 2000, pp. 73–105.
- Rupp R., Boichard D. (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci., 82:2198–2204.10.3168/jds.S0022-0302(99)75465-2
- Sammiullah M.U.D., Syed M. A., Khan M., (2000). Frequency and causes of culling and mortality in Holstein Friesian cattle in NWFP (Pakistan). J. Anim. Hlth. Prod., 20: 22-24.
- Schroeder J. (2012). Bovine Mastitis and Milking Management. North Dakota State University. https://www.ag.ndsu.edu/pubs/ansci/dairy/as1129.pdf
- Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res., 34: 475–491.10.1051/vetres:2003027
- Sharma N., Singh N.K., Bhadwal M.S., (2011). Relationship of somatic cell count and mastitis: An overview. Asian Austral. J. Anim. Sci., 24(3): 429–438.10.5713/ajas.2011.10233
- Shitandi A., Anakalo G., Galgalo T., Mwangi M. (2004). Prevalence of bovine mastitis amongst smallholder dairy herds in Kenya. Isr. J. Vet. Med., 59:1–2.
- Singer, J.B., 2009. Candidate gene association analysis. In Cardiovascular Genomics (pp. 223-230). Humana Press, Totowa, NJ.10.1007/978-1-60761-247-6_1319763931
- Smith D.K., Neal J.J., Holmberg S.D. (1993). Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The Centers for Disease Control Idiopathic CD4 T-lymphocytopenia Task Force. N. Engl. J. Med., 328(6):373-379.10.1056/NEJM199302113280601
- Smith S.J., Cases S., Jensen D.R., Chen H.C., Sande E., Tow B., Sanan D.A., Raber J., Eckel R.H., Farese Jr.R.V. (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet., 25(1):87.10.1038/75651
- Soltys J., Quinn M.T. (1999). Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infect. Immun., 67(12):6293-6302.10.1128/IAI.67.12.6293-6302.1999
- Song M., He Y., Zhou H., Zhang Y., Li X., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6:29390. doi: 10.1038/srep29390.10.1038/srep29390494416627411928
- Sorensen L.P., Mark T., Madsen P., Lund M.S. (2009). Genetic correlations between pathogen specific mastitis and somatic cell count in Danish Holsteins. J. Dairy Sci., 92(7): 3457-3471.10.3168/jds.2008-1870
- Stear M.J., Bisshop S.C., Mallard B.A., Raadsma H. (2001). The sustainability, feasibility and desirability of breeding livestock for disease resistance. Vet. Sci., 71(1):1-7.10.1053/rvsc.2001.0496
- Swanson K.M., Stelwagen K., Davis S.R., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117-129.10.3168/jds.2008-1382
- Tak W. M., Mary E.S. (2006). The T cell Receptor: Structure of Its Proteins and Genes, in The Immune Response, III. STRUCTURE OF CD4.
- Taylor B.C., Keefe R.G., Dellinger J.D., Nakamura Y., Cullor J.S., Stott J.L. (1997). T cell populations and cytokine expression in milk derived from normal and bacteria-infected bovine mammary glands. Cellular immunology, 182(1): 68-76.10.1006/cimm.1997.1215
- Uddin M.N., Uddin M.B., Al-Mamun M., Hassan M.M., Khan M.M.H. (2012). Small Scale dairy farming for livelihoods of rural farmers: constraint and prospect in Bangladesh. J. Anim. Sci. Adv., 2(6): 543–550.
- Usman T., Wang Y., Song M., Wang X., Dong Y., Liu C., Wang S., Zhang Y., Xiao W., Yu Y. (2017). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. Genet. Mol. Res., 16(4).10.4238/gmr16039859
- Usman T., Yu Y., Zhai L., Liu C., Wang X., Wang Y. (2016). Association of CD4 SNPs with fat percentage of Holstein cattle. Genet. Mol. Res., 15(3).10.4238/gmr.1503869727706731
- Usman T., Yachun W., Minyan S., Xiao W., Yichun D., Chao L., Shuxiang W., Yi Z., Wei X., Ying Y. (2018). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. GMR, 17(1).10.4238/gmr16039859
- Viegher D.E.S., Barkema H.W., Stryhn. H., Opsomer G., De Kruif A. (2005). Impact of early lactation somatic cell count in heifers on milk yield over the first lactation. J. Dairy Sci., 88: 938-47.10.3168/jds.S0022-0302(05)72761-2
- Wang X.S., Zhang Y., He Y.H., Ma P.P., et al. 2013. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genetics and Molecular Research, 12: 6228-39.
- Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12(4): 6228-6239.10.4238/2013.December.4.10
- Wang, Z., Hong, J., Sun, W., Xu, G., Li, N., Chen, X., Liu, A., Xu, L., Sun, B. and Zhang, J.Z., 2006. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25–T cells to CD4+ Tregs. The Journal of clinical investigation, 116(9), pp.2434-2441.10.1172/JCI25826153387316906223
- Winter P., Colditz I. G. (2002). Immunological responses of the lactating ovine udder following experimental challenge with Staphylococcus epidermidis. Vet. Immunol. Immunopathol., 89(2):57–65.10.1016/S0165-2427(02)00184-8
- Xu, Y., Weatherall, C., Bailey, M., Alcantara, S., De Rose, R., Estaquier, J., Wilson, K., Suzuki, K., Corbeil, J., Cooper, D.A. and Kent, S.J., 2013. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. Journal of virology, 87(7), pp.3760-3773.10.1128/JVI.02497-12362422423325697
- Yu Y., Rabinowitz R., Steinitz M., Schlesinger M. (2002). Correlation between the expression of CD4 and the level of CD4 mRNA in human B-cell lines. Cell Immunol., 215: 78–86.10.1016/S0008-8749(02)00003-5
- Zhao X., Lacasse P. (2018). Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci., 86:57-65.10.2527/jas.2007-0302
- Zou Y.R., Sunshine M.J., Taniuchi I., Hatam F., Killeen N., Littman D.R. (2001). Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet., 29(3):332–6.10.1038/ng750
- Zou, Y., Li, W.Y., Wan, Z., Zhao, B., He, Z.W., Wu, Z.G., Huang, G.L., Wang, J., Li, B.B., Lu, Y.J. and Ding, C.C., 2015. Huangqin-tang ameliorates TNBS-induced colitis by regulating effector and regulatory CD4. BioMed research international, 2015.10.1155/2015/102021453942726347453