Have a personal or library account? Click to login
A Review on Bovine Mastitis with Special Focus on CD4 as a Potential Candidate Gene for Mastitis Resistance – A Review Cover

A Review on Bovine Mastitis with Special Focus on CD4 as a Potential Candidate Gene for Mastitis Resistance – A Review

Open Access
|Aug 2020

References

  1. Alan C., Jung M.D, Douglas S., Paauw M.D. (1998). Diagnosing HIV-related Disease using the CD4 Count as a guide. J. Gen. Intern. Med., 13:131-136.10.1046/j.1525-1497.1998.00031.x
  2. Alhussien M.N., Dang A.K. (2018). Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World, 11(5): 562-577.10.14202/vetworld.2018.562-577
  3. Almaw G., Molla W., Melaku A. (2012). Incidence rate of clinical bovine mastitis in selected smallholder dairy farms in Gondar Town in Ethiopia. Ethiop. Vet. J., 16(1): 93–99.10.4314/evj.v16i1.8
  4. Almeida R.A., Calvinho L.F., Oliver, S.P. (1998). Potential virulence factors of Streptococcus dysgalactiae associated with bovine mastitis. Vet. Micro., 61(1-2): 93-110.10.1016/S0378-1135(98)00172-2
  5. Ameh J.A., Tari L.S. (2000). Observation on the prevalence of caprine mastitis in relation to predisposing factors in Maiduguri. Small Rumin. Res., 35: 1-5.10.1016/S0921-4488(99)00047-4
  6. Ateya A.I., El-Seady Y.Y., Atwa S.M., Merghani B.H., Sayed N.A. (2016). Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. GENETIKA, 48(1): 199-210.10.2298/GENSR1601199A
  7. Bachaya H.A., Raza, M.A., Murtaza, S., Akbar, I.U.R. (2011). Subclinical Bovine Mastitis in Muzaffar Garh District of Punjab, Pakistan. J. Anim. Plant Sci., 21: 16-19.
  8. Banos G., Wall E., Coffey M., Bagnall, A., Gillespie S., Russell G., McNeilly T. (2013). Identification of Immune Traits Correlated with Dairy Cow Health, Reproduction and Productivity. PLoS ONE, 8(6): 65766.10.1371/journal.pone.0065766
  9. Bansal B.K., Hamann, J., Grabowski, T.N., Singh, K.B. (2005). Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy Res., 72(2): 144–152.10.1017/S0022029905000798
  10. Bialecki E., Macho F. E., Ivanov S., Paget C., Fontaine J. (2011) Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 6: e26919.10.1371/journal.pone.0026919
  11. Bilal M.Q., Iqbal M.U., Muhammad G., Avais M., Sajid M.S. (2004). Factors affecting the prevalence of clinical mastitis in buffaloes around Faisalabad District. Pak. Intern. J. Agri. Bio., 6(1): 185-187.
  12. Boonyayatra S., Chaisri W. (2005). Incidence and prevalence of sub-clinical mastitis in smallholder dairy farms of Chiang Mai Province, Thailand. Chiang Mai Vet. J., 2: 25–30.
  13. Boscariol R., Pleasance J., Piedrafita D.M., Raadsma H.W., Spithill T.W. (2006). Identification of two allelic forms of ovine CD4 exhibiting a Ser183/Pro183 polymorphism in the coding sequence of domain 3. Vet. Immunol. Immunopathol., 113(3-4): 305-312.10.1016/j.vetimm.2006.05.015
  14. Bradley A.J., Green M.J. (2001). Etiology of clinical mastitis in six Somerset dairy herds. Vet. Res., 148: 683-686.10.1136/vr.148.22.683
  15. Brodzki P., Kostro A., Brodzki W., Wawron J., Marczuk Kurek Ł. (2015). Inflammatory cytokines and acutephase proteins concentrations in the peripheral blood and uterus of cows that developed endometritis during early postpartum. Theriogenology, 84:11-18.10.1016/j.theriogenology.2015.02.006
  16. Burton J.L., Erskine R.J. (2003). Immunity and mastitis some new ideas for an old disease. Vet. Clin. Food Anim. J., 19(1): 1-45.10.1016/S0749-0720(02)00073-7
  17. Burvenich C., Van M., Mehrzad J., Diez-Fraile A., Duchateau L. (2003). Severity of E. coli mastitis is mainly determined by cow factors. Vet. Res., 34:521-564.10.1051/vetres:2003023
  18. Campbell J.R., Marshall R.T. (2016). Dairy Production and Processing: The Science of Milk and Milk Products: Waveland Press.
  19. Cao D., Jing X., Wang X., Liu H., Chen D. (2012). Dynamics of CD4+ lymphocytes in mouse mammary gland challenged with Staphylococcus aureus. Asian J. Anim. Vet. Adv., 7: 1041-1048.10.3923/ajava.2012.1041.1048
  20. Coulon J.B., Gasqui P., Barnouin J., Oliier A., Pradel P., Pomiès D. (2002). Effect of mastitis and related germs on milk yield and composition during naturally-occurring udder infections in dairy cows. Anim. Res., 51(5): 383–393.10.1051/animres:2002031
  21. Dekkers J.C.M., Hospital F. (2002).The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Gen., 3: 22–3210.1038/nrg701
  22. Detilleux J.C., (2002). Genetic factors affecting susceptibility of dairy cows to udder pathogens. Vet. Immunol. Immunopathol., 88 103–110.10.1016/S0165-2427(02)00138-1
  23. Dieser S.A., Vissio C., Lasagno M.C., Bogni C.I., Larriestra A.J., Odierno L.M. (2014). Prevalence of pathogens causing subclinical mastitis in Argentinean dairy herds. Pak. Vet. J., 34(1): 124-126.
  24. Faramarz N., (2008). Principles of Immunophenotyping, in Hematopathology.
  25. Fareed K.S., Khalid H.M., Allah B.K., Shajeela A., Muhammad I.B., Mehmood-ul-Hasan, Muhammad A., Taseer A.K. (2015). Prevalence and economic losses of reproductive disorders and mastitis in buffaloes at Karachi, Pakistan. Indian J. Anim. Res., 389: 1-410.18805/ijar.8602
  26. Feil R., Fraga M.F. (2012). Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Gen., 13(2): 97.10.1038/nrg3142
  27. Fourichon C., Seegers H., Malher X. (2000). Effect of disease on reproduction in the dairy cow: a meta-analysis. Theriogenology, 53: 1729–1759.10.1016/S0093-691X(00)00311-3
  28. Gebreyohannes Y.T., Regassa F.G., Kelay B. (2010). Milk yield and associated economic losses in quarters with subclinical mastitis due to Staphylococcus aureus in Ethiopian crossbred dairy cows. Trop. Anim. Health Prod., 42: 925-931.10.1007/s11250-009-9509-2
  29. Gera S., Guha A. (2011). Assessment of acute phase proteins and nitric oxide as indicator of subclinical mastitis in Holstein × Haryana cattle. Ind. J. Anim. Sci., 81(10): 1029–1031.
  30. Gilmour A., Harvey J. (1990). Society for Applied Bacteriology Symposium Series. 19:147S166S.10.1111/j.1365-2672.1990.tb01805.x
  31. Glass E.J., Preston P.M., Springbett A., Craigmile S., Kirvar E., Wilkie G., Brown C.D. (2005). Bos taurus and Bos indicus (Sahiwal) calves respond differently to infection with Theileria annulata and produce markedly different levels of acute phase proteins. Int. J. Para., 35(3):337-347.10.1016/j.ijpara.2004.12.006
  32. Goddard M.E., Hayes B.J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Gen., 10(6): 381-391.10.1038/nrg2575
  33. Gustafsson K., Germana S., Sundt T.M., Sachs D.H., LeGuern, C. (1993). Extensive allelic polymorphism in the CDR2-like region of the miniature swine CD4 molecule. J. Immunol., 151(3): 1365-1370.10.4049/jimmunol.151.3.1365
  34. Haas Y.D, Ouweltjes W., Napel J., Windig J., Jong G. (2008). Alternative traits for somatic cell counts as mastitis-indicators for genetic selection. J. Dairy Sci., 91: 2501-2511.10.3168/jds.2007-0459
  35. Hagnestam-Nielsen C., Ostergaard S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal, 3(2):315-328.10.1017/S1751731108003352
  36. Halasa T., Huijps K., Osteras O., Hogeveen H. (2007). Economic effects of bovine mastitis and mastitis management: A review. Vet. Quarterly, 29(1): 18–31.10.1080/01652176.2007.9695224
  37. Hameed K.G.A., Sender G., Korwin-Kossakowska A. (2007). Public health hazard due to mastitis in dairy cows. Anim. Sci. Pap. Rep., 25(2): 73–85.
  38. He Y., Chu Q., Ma P., Wang Y., Zhang Q., Sun D., Zhang Y., Yu Y. and Zhang Y., 2011. Association of bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk production traits in Chinese Holsteins. J. dairy res., 78(2): 242-249.10.1017/S002202991100014821435309
  39. Hennig B.J., Velez-Edwards D.R., Van Der Loeff M.F.S., Bisseye C., Edwards T.L., Tacconelli A., Novelli G., Aaby P., Kaye S., Scott W.K., Jaye A. (2011). CD4 intragenic SNPs associate with HIV-2 plasma viral load and CD4 count in a community-based study from Guinea-Bissau, West Africa. J.A.I.D.S., 56(1):1-8.10.1097/QAI.0b013e3181f638ed
  40. Heyen D.W., Weller J.I., Ron M., Band M., Beever J.E., Feldmesser E., Wiggans G.R., VanRaden P.M., Lewin H.A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physio. Genomics, 1(3):165-175.10.1152/physiolgenomics.1999.1.3.165
  41. Hinds D.A., Stuve L.L., Nilsen G.B., Halperin E., Eskin E., Ballinger D.G., Frazer K.A., Cox D.R. (2005). Whole genome patterns of common DNA variation in three human populations. Science, 307:1072–1079.10.1126/science.1105436
  42. Hinrichs D., Stamer E., Junge W., Kalim E. (2005). Genetic analyses of mastitis data using animal threshold models and genetic correlation with production traits. J. Dairy Sci, 88:2260-2268.10.3168/jds.S0022-0302(05)72902-7
  43. Hogan J. (2005). Human health risks associated with high SCC milk. Proceedings of the British Mastitis Conference, 2005. Stoneleigh, Warwickshire, UK, 12 October 2005. Inst.Anim.Health, 21–124 pp.
  44. Hogeveen H., (2005). Mastitis in dairy production: Current knowledge and future solutions. Book Type: Conference Proceeding. ISBN: 9789076998701. https://doi.org/10.3920/978-90-8686-550-5.10.3920/978-90-8686-550-5
  45. Hogeveen H., Huijps, K., Lam T.J.G.M. (2011). Economic aspects of mastitis: New developments. New Zealand Vet. J., 59(1): 16–23.10.1080/00480169.2011.547165
  46. Holmes C.W., Wilson G.F. (1984). Milk Production from Pastures. Butterworths of New Zealand. Wellington, New Zealand.
  47. Horejsi V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol. Rev., 191: 148–164. 36.10.1034/j.1600-065X.2003.00001.x
  48. International Dairy Federation. (1999). Suggested interpretation of mastitis terminology. Bulletin of the International Dairy Federation: 338, 3–26.
  49. Iraguha B., Hamudikuwanda H., Mushonga B., Kandiwa, E., Mpatswenumugabo J.P. (2017). Comparison of cow-side diagnostic tests for subclinical mastitis of dairy cows in Musanze district, Rwanda. J.S.A.V.A., 88:1464. https://doi.org/10.4102/jsava.v88i0.146410.4102/jsava.v88i0.1464613812428697611
  50. Islam M. A., Islam M. Z., Rahman M. S., Islam M. T. (2011). Prevalence of subclinical mastitis in dairy cows in selected areas of Bangladesh. Bangladesh J. Vet. Med., 9 (1): 73-78.10.3329/bjvm.v9i1.11216
  51. Jones G.M. (2006). Understanding the basics of mastitis. Virginia State University, USA. Virginia Cooperative Extension, Publication, 7:404-233.
  52. Joshi S., Gokhale S. (2006). Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Ann. New York Acad. Sci., 1081: 74–83.10.1196/annals.1373.007
  53. Karima G.A.H. (2013). Genetic basis of mastitis resistance in dairy cattle - a review. Ann. Anim. Sci., 13(4):663–673.10.2478/aoas-2013-0043
  54. Katsande S., Matope G., Ndengu M., Pfukenyi D.M. (2013). Prevalence of mastitis in dairy cows from small lholder farms in Zimbabwe. J. Vet. Res., 80(1): E1–7. [Online. doi: 10.4102/ojvr.v80i1.523.]10.4102/ojvr.v80i1.52323718150
  55. Kehrli M.E., Shuster D.E. (1994). Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J. Dairy Sci., 77: 619-627.10.3168/jds.S0022-0302(94)76992-7
  56. Kitchen B.J. (1981). Review of the progress of dairy science - bovine mastitis - milk compositional changes and related diagnostic-tests. J. Dairy Res., 48(1): 167–188.10.1017/S0022029900021580
  57. Klatzmann D. (1984). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature, 312:767–768.10.1038/312767a0
  58. Koivula M., Mantysaari E.A., Negussie E., Serenius T. (2005). Genetic and Phenotypic Relationships among Milk Yield and Somatic Cell Count Before and After Clinical Mastitis. J. Dairy Sci., 88(2):827–833.10.3168/jds.S0022-0302(05)72747-8
  59. Kolbehdari D., Wang Z., Grant J.R., Murdoch B., Prasad A., Xiu Z., Marques E., Stothard P., Moore S.S. (2009). A whole genome scan to map QTL for milk production traits and somatic cell score in Canadian Holstein bulls. J. Anim. Breed. Genet., 126: 216–227.10.1111/j.1439-0388.2008.00793.x
  60. Kono T., Korenaga H. (2013). Cytokine Gene Expression in CD4 Positive Cells of the Japanese Pufferfish, Takifugu rubripes. PLoS ONE, 8(6): e66364. [doi:10.1371/journal.pone.0066364]10.1371/journal.pone.0066364368888023823320
  61. Koskinen R., Salomonsen J., Tregaskes C.A., Young J.R., Goodchild M., Bumstead N. Vainio O. (2002). The chicken CD4 gene has remained conserved in evolution. Immunogenetics, 54(7):520-525.10.1007/s00251-002-0490-4
  62. Kozacinski L.M., Iladziosmanovi T., Majic I.K., Jole C.Z. (2002). Relationships between the results of mastitis tests, somatic cell counts and the detection of mastitis agents in milk. Paraxis Vet., 57: 255-260.
  63. Kurup M.P.G. (2001). Smallholder dairy production and marketing in India. Opportunities and constraints. In: D. Rangnekar and W. Thorpe (editors). Smallholder dairy production and marketing –Opportunities and constraints. Proceedings of a South– South workshop held at National Dairy Development Board (NDDB) Anand, India, 13–16 March 2001. ILRI, Nairobi, Kenya.
  64. Leung R.K., Thomson K., Gallimore A., Jones E., Van den B.M., Sierro S. et al., (2001). Deletion of the CD4 silencer element supports a stochastic mechanism of thymocyte lineage commitment. Nat. Immunol., 2(12):1167–73. [doi:10.1038/ni733]10.1038/ni73311694883
  65. Marie H., Gitte K., Carsten S., Larsen G.P., Court P., Niels O., Jan G. (2013). CD4 Decline is associated with increased risk of cardiovascular disease, cancer, and death in virally suppressed patients with HIV. Clinical Infectious Diseases, 57(2):314-321.10.1093/cid/cit232
  66. Mattapallil J.J. et al. (2005). Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature, 434:1093–1097.10.1038/nature03501
  67. Megersa B., Chala T., Abunna F., Regassa A., Berhanu M., Etana D. (2010). Occurrence of mastitis and associated risk factors in lactating goats under pastoral management in Borana, Southern Ethiopia. Trop. Anim. Hlth. Production, 42: 1249-1255.10.1007/s11250-010-9557-7
  68. Mellenberger R. Dept. of Animal Sciences, Michigan State University and Carol, J. Roth, Dept. of Dairy Science, University of Wisconsin-Madison April, 2000.
  69. Memon M.I., Mirbahar K.B.,. Memon M.R, Akhtar N., Soomoro S.A., Dewani P. (1999). A study on the etiology of subclinical mastitis in buffaloes. Pakistan J. Agri. Eng. Vet. Sci., 15: 34-36.
  70. Miyagawa F., Nakamura Y., Miyashita K., Iioka H., Himuro Y., Ogawa K., Nishimura C., Nishikawa M., Mitsui Y., Ito Y., Ommori R. (2016). Preferential expression of CD134, an HHV-6 cellular receptor, on CD4 T cells in drug-induced hypersensitivity syndrome (DIHS)/drug reaction with eosinophilia and systemic symptoms (DRESS). J. Dermatological Sci., 83(2): 151-154.10.1016/j.jdermsci.2016.05.001
  71. Moges N., Hailemariam T., Fentahun T., Chaine M., Melaku A. (2012). Bovine mastitis and associated risk factors in smallholder lactating dairy farms in Hawassa, Southern Ethiopia. Global Veterinarian, 9(4): 441–446.
  72. Muhasin A.V.N., Kumar A., Rahim A., Sebastian R., Mohan V., Dewangan P.P.M. (2014). An overview on single nucleotide polymorphism studies in mastitis research. Vet. world, 7(6): 416-421. [doi: 10.14202/vetworld.2014.416-421]10.14202/vetworld.2014.416-421
  73. Mukherji B.I.J.A.Y., Guha A., Chakraborty N.G., Sivanandham M., Nashed A.L., Sporn J.R., Ergin M.T. (1989). Clonal analysis of cytotoxic and regulatory T cell responses against human melanoma. J. Exp. Med., 169(6): 1961-1976.10.1084/jem.169.6.1961
  74. Nam H.M., Kim J.M., Lim S.K., Jang K.C., Jung S.C. (2010). Infectious aetiologies of mastitis on Korean dairy farms during 2008. J. RVSC., 88: 372-4.10.1016/j.rvsc.2009.12.008
  75. Ndegwa E.N., Mulei C.M., Munyna S.J. (2000). The prevalence of subclinical mastitis in dairy goats in Kenya. J. South Afr. Vet. Assoc., 71: 25-27.10.4102/jsava.v71i1.672
  76. Ojo O.E., Oyekunle M.A., Ogunleye A.O., Otesile E.B. (2009). Escherichi coli, O157:H7 in Food animals in part of south-western Nigeria. Prevalence and invitro antimicrobial susceptibility. Trop. Vet., 26 (3): 23-30.
  77. Oliver S., González R., Hogan J., Jayarao B., Owens W. (2004). Microbiological procedures for the diagnosis of bovine udder infection and determination of milk quality, 4th Ed, National Mastitis Council, Verona, WI, USA, 1-28 pp.
  78. Oviedo-Boyso J., Valdez-Alarcón J., Cajero-Juárez M., Ochoa-Zarzosa, A., López-Meza J., Bravo-Patiño A., Baizabal-Aguirre V. (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J. of Infection, 54(4):399-409.10.1016/j.jinf.2006.06.010
  79. Oyugi J.O., Vouriot F.C., Alimonti J., Wayne S., Luo M., Ao Z., Yao X., Sekaly R.P., Elliott L.J., Simonsen J.N. (2009). A common CD4 gene variant is associated with an increased risk of HIV-1 infection in Kenyan female commercial sex workers. The J. infect. dis., 199(9), pp.1327-1334.10.1086/59761619301975
  80. Pant S.D., Schenkel F.S., Baca I.L., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421. doi:10.1186/1471-2164-8421.10.1186/1471-2164-8-421
  81. Pirzada M., Malhi K.K., Kamboh A.A., Rind R., Abro S.H., Lakho S.A., Bhutto K.R., Huda N. (2016). Prevalence of subclinical mastitis in dairy goats caused by bacterial species. J. Anim. Health Prod. 4(2): 55-59.10.14737/journal.jahp/2016/4.2.55.59
  82. Rahman A., Islam M., Rony A., Sharmin, Islam M. (2010). PREVALENCE AND RISK FACTORS OF MASTITIS IN LACTATING DAIRY COWS AT BAGHABARI MILK SHED AREA OF SIRAJGANJ. Bangladesh J. Vet. Med., 8:157-162. [10.3329/bjvm.v8i2.11200]10.3329/bjvm.v8i2.11200
  83. Rivas A.L., Schwager S.J., González R.N., Quimby F.W., Anderson K.L. (2007). Multifactorial relationships between intramammary invasion by Staphylococcus aureus and bovine leukocyte markers. Can. J. Vet. Res., 71(2):135.
  84. Rollin E., Dhuyvetter K.C., Overton M.W. (2015). The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Preventive Vet. Med., 122(3):257-6410.1016/j.prevetmed.2015.11.00626596651
  85. Rothschild M.F., Skow L., Lamont S.J. (2000). The major Histocompatibility Complex and it’s role in disease resistance and immune responsiveness, in: Axford R.F.E., Bishop S.C., Nicholas F.W., Owen J.B (Eds.), Breeding for disease resistance in farm animals, CAB International, 2000, pp. 73–105.
  86. Rupp R., Boichard D. (1999). Genetic parameters for clinical mastitis, somatic cell score, production, udder type traits, and milking ease in first lactation Holsteins. J. Dairy Sci., 82:2198–2204.10.3168/jds.S0022-0302(99)75465-2
  87. Sammiullah M.U.D., Syed M. A., Khan M., (2000). Frequency and causes of culling and mortality in Holstein Friesian cattle in NWFP (Pakistan). J. Anim. Hlth. Prod., 20: 22-24.
  88. Schroeder J. (2012). Bovine Mastitis and Milking Management. North Dakota State University. https://www.ag.ndsu.edu/pubs/ansci/dairy/as1129.pdf
  89. Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res., 34: 475–491.10.1051/vetres:2003027
  90. Sharma N., Singh N.K., Bhadwal M.S., (2011). Relationship of somatic cell count and mastitis: An overview. Asian Austral. J. Anim. Sci., 24(3): 429–438.10.5713/ajas.2011.10233
  91. Shitandi A., Anakalo G., Galgalo T., Mwangi M. (2004). Prevalence of bovine mastitis amongst smallholder dairy herds in Kenya. Isr. J. Vet. Med., 59:1–2.
  92. Singer, J.B., 2009. Candidate gene association analysis. In Cardiovascular Genomics (pp. 223-230). Humana Press, Totowa, NJ.10.1007/978-1-60761-247-6_1319763931
  93. Smith D.K., Neal J.J., Holmberg S.D. (1993). Unexplained opportunistic infections and CD4+ T-lymphocytopenia without HIV infection. An investigation of cases in the United States. The Centers for Disease Control Idiopathic CD4 T-lymphocytopenia Task Force. N. Engl. J. Med., 328(6):373-379.10.1056/NEJM199302113280601
  94. Smith S.J., Cases S., Jensen D.R., Chen H.C., Sande E., Tow B., Sanan D.A., Raber J., Eckel R.H., Farese Jr.R.V. (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet., 25(1):87.10.1038/75651
  95. Soltys J., Quinn M.T. (1999). Selective recruitment of T-cell subsets to the udder during staphylococcal and streptococcal mastitis: analysis of lymphocyte subsets and adhesion molecule expression. Infect. Immun., 67(12):6293-6302.10.1128/IAI.67.12.6293-6302.1999
  96. Song M., He Y., Zhou H., Zhang Y., Li X., Yu Y. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6:29390. doi: 10.1038/srep29390.10.1038/srep29390494416627411928
  97. Sorensen L.P., Mark T., Madsen P., Lund M.S. (2009). Genetic correlations between pathogen specific mastitis and somatic cell count in Danish Holsteins. J. Dairy Sci., 92(7): 3457-3471.10.3168/jds.2008-1870
  98. Stear M.J., Bisshop S.C., Mallard B.A., Raadsma H. (2001). The sustainability, feasibility and desirability of breeding livestock for disease resistance. Vet. Sci., 71(1):1-7.10.1053/rvsc.2001.0496
  99. Swanson K.M., Stelwagen K., Davis S.R., Henderson H.V., Davis S.R., Farr V.C., Singh K. (2009). Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model. J. Dairy Sci., 92: 117-129.10.3168/jds.2008-1382
  100. Tak W. M., Mary E.S. (2006). The T cell Receptor: Structure of Its Proteins and Genes, in The Immune Response, III. STRUCTURE OF CD4.
  101. Taylor B.C., Keefe R.G., Dellinger J.D., Nakamura Y., Cullor J.S., Stott J.L. (1997). T cell populations and cytokine expression in milk derived from normal and bacteria-infected bovine mammary glands. Cellular immunology, 182(1): 68-76.10.1006/cimm.1997.1215
  102. Uddin M.N., Uddin M.B., Al-Mamun M., Hassan M.M., Khan M.M.H. (2012). Small Scale dairy farming for livelihoods of rural farmers: constraint and prospect in Bangladesh. J. Anim. Sci. Adv., 2(6): 543–550.
  103. Usman T., Wang Y., Song M., Wang X., Dong Y., Liu C., Wang S., Zhang Y., Xiao W., Yu Y. (2017). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. Genet. Mol. Res., 16(4).10.4238/gmr16039859
  104. Usman T., Yu Y., Zhai L., Liu C., Wang X., Wang Y. (2016). Association of CD4 SNPs with fat percentage of Holstein cattle. Genet. Mol. Res., 15(3).10.4238/gmr.1503869727706731
  105. Usman T., Yachun W., Minyan S., Xiao W., Yichun D., Chao L., Shuxiang W., Yi Z., Wei X., Ying Y. (2018). Novel polymorphisms in bovine CD4 and LAG-3 genes associated with somatic cell counts of clinical mastitis cows. GMR, 17(1).10.4238/gmr16039859
  106. Viegher D.E.S., Barkema H.W., Stryhn. H., Opsomer G., De Kruif A. (2005). Impact of early lactation somatic cell count in heifers on milk yield over the first lactation. J. Dairy Sci., 88: 938-47.10.3168/jds.S0022-0302(05)72761-2
  107. Wang X.S., Zhang Y., He Y.H., Ma P.P., et al. 2013. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genetics and Molecular Research, 12: 6228-39.
  108. Wang X.S., Zhang Y., He Y.H., Ma P.P., Fan L.J., Wang Y.C., Zhang Y.I., Sun D.X., Zhang S.L., Wang C.D., Song J.Z. (2013). Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res., 12(4): 6228-6239.10.4238/2013.December.4.10
  109. Wang, Z., Hong, J., Sun, W., Xu, G., Li, N., Chen, X., Liu, A., Xu, L., Sun, B. and Zhang, J.Z., 2006. Role of IFN-γ in induction of Foxp3 and conversion of CD4+ CD25–T cells to CD4+ Tregs. The Journal of clinical investigation, 116(9), pp.2434-2441.10.1172/JCI25826153387316906223
  110. Winter P., Colditz I. G. (2002). Immunological responses of the lactating ovine udder following experimental challenge with Staphylococcus epidermidis. Vet. Immunol. Immunopathol., 89(2):57–65.10.1016/S0165-2427(02)00184-8
  111. Xu, Y., Weatherall, C., Bailey, M., Alcantara, S., De Rose, R., Estaquier, J., Wilson, K., Suzuki, K., Corbeil, J., Cooper, D.A. and Kent, S.J., 2013. Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques. Journal of virology, 87(7), pp.3760-3773.10.1128/JVI.02497-12362422423325697
  112. Yu Y., Rabinowitz R., Steinitz M., Schlesinger M. (2002). Correlation between the expression of CD4 and the level of CD4 mRNA in human B-cell lines. Cell Immunol., 215: 78–86.10.1016/S0008-8749(02)00003-5
  113. Zhao X., Lacasse P. (2018). Mammary tissue damage during bovine mastitis: Causes and control. J. Anim. Sci., 86:57-65.10.2527/jas.2007-0302
  114. Zou Y.R., Sunshine M.J., Taniuchi I., Hatam F., Killeen N., Littman D.R. (2001). Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet., 29(3):332–6.10.1038/ng750
  115. Zou, Y., Li, W.Y., Wan, Z., Zhao, B., He, Z.W., Wu, Z.G., Huang, G.L., Wang, J., Li, B.B., Lu, Y.J. and Ding, C.C., 2015. Huangqin-tang ameliorates TNBS-induced colitis by regulating effector and regulatory CD4. BioMed research international, 2015.10.1155/2015/102021453942726347453
DOI: https://doi.org/10.2478/aoas-2020-0024 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 735 - 755
Submitted on: Jun 20, 2019
Accepted on: Feb 18, 2020
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Arsalan Rasheed, Tahir Usman, Kamal Niaz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.