Have a personal or library account? Click to login
Genome-Wide Association Study of Weaning Traits in Lori-Bakhtiari Sheep Cover

Genome-Wide Association Study of Weaning Traits in Lori-Bakhtiari Sheep

Open Access
|Aug 2020

References

  1. Abdoli R., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Gondro C. (2018). Genome-wide association study to identify genomic regions affecting prolificacy in Lori-Bakhtiari sheep. Anim. Genet., 49: 488–491.
  2. Abdoli R., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Zamani P., Moradi M.H., Ferdosi M.H., Gondro, C. (2019). Genome-wide association study of first lambing age and lambing interval in sheep. Small Rumin. Res., 178: 43–45.
  3. Abdoli R., Zamani P., Mirhoseini S.Z., Ghavi Hossein-Zadeh N., Nadri S. (2016). A review on prolificacy genes in sheep. Reprod. Domest. Anim., 51: 631–637.
  4. Abu-Farha M., Cherian P., Al-Khairi I., Madhu D., Tiss A., Warsam S., Alhubail A., Sriraman D., Al-Refaei F., Abubaker J. (2017). Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise. PLoS One, 12: e0173024.
  5. Al-Mamun H.A., Kwan P., Clark S.A., Ferdosi M.H., Tellam R., Gondro C. (2015). Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol., 47: 66.
  6. Armstrong E., Ciappesoni G., Iriarte W., Da Silva C., Macedo F., Navajas E.A., Brito G., San Julián R., Gimeno D., Postiglioni A. (2018). Novel genetic polymorphisms associated with carcass traits in grazing Texel sheep. Meat Sci., 145: 202–208.
  7. Bellinge R.H.S., Liberles D.A., Iaschi S.P.A., O’brien P.A., Tay G.K. (2005). Myostatin and its implications on animal breeding: a review. Anim. Genet., 36: 1–6.
  8. Chang C.C., Chow C.C., Tellier L.C.A.M., Vattikuti S., Purcell S.M., Lee J.J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4: 1–16.
  9. Dackor R., Fritz-Six K., Smithies O., Caron K. (2007). Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J. Biol. Chem., 282: 18094–18099.
  10. Di Iorgi N., Morana G., Allegri A.E.M., Napoli F., Gastaldi R., Calcagno A., Patti G., Loche S. (2016). Classical and non-classical causes of GH deficiency in the paediatric age. Best Pract. Res. Clin. Endocrinol. Metab., 30: 705–736.
  11. Ghasemi M., Zamani P., Vatankhah M., Abdoli R. (2019). Genome-wide association study of birth weight in sheep. Animal, 13: 1797–1803.
  12. Gholizadeh M., Rahimi-Mianji G., Nejati-Javaremi A. (2015). Genomewide association study of body weight traits in Baluchi sheep. J. Genet., 94: 143–146.
  13. Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S., Tokunaga C., Avruch J., Yonezawa K. (2002). Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell, 110: 177–189.
  14. Hatcher S., Eppleston J., Thornberry K.J., Watt B. (2010). High Merino weaner survival rates are a function of weaning weight and positive post-weaning growth rates. Anim. Prod. Sci., 50: 465–472.
  15. Hay D.L., Pioszak A.A. (2016). Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles. Annu. Rev. Pharmacol. Toxicol., 56: 469–487.
  16. Johannessen M.K., Skretting G., Ytrehus B., Røed K.H. (2007). Neonatal growth cartilage: equine tissue specific gene expression. Biochem. Biophys. Res. Commun., 354: 975–980.
  17. Jonas E., Thomson P.C., Raadsma H.W. (2010). Genome-wide association study and fine mapping of QTL on OAR 21 for body weight in sheep, in: Proceeding of the 9th World Congress on Genetics Applied to Livestock Production. Leipzig, Germany.
  18. Kim H.G., Ahn J.W., Kurth I., Ullmann R., Kim H.T., Kulharya A., Ha K.S., Itokawa Y., Meliciani I., Wenzel W., Lee D., Rosenberger G., Ozata M., Bick D.P., Sherins R.J., Nagase T., Tekin M., Kim S.H., Kim C.H., Ropers H.H., Gusella J.F., Kalscheuer V., Choi C.Y., Layman L.C. (2010). WDR11, a WD protein that interacts with transcription factor EMX1, Is mutated in idiopathic hypogonadotropic hypogonadism and kallmann syndrome. Am. J. Hum. Genet., 87: 465–479.
  19. Lamming D.W., Sabatini D.M. (2013). A central role for mTOR in lipid homeostasis. Cell Metab., 18: 465–469.
  20. Li J., Kim S.G., Blenis J. (2014). Rapamycin: one drug, many effects. Cell Metab., 19: 373–379.
  21. Ma X., Guan L., Xuan J., Wang H., Yuan Z., Wu M., Liu R., Zhu C., Wei C., Zhao F. (2016). Effect of polymorphisms in the CAMKMT gene on growth traits in U jumqin sheep. Anim. Genet., 47: 618–622.
  22. Mao Z., Zhang W. (2018). Role of mTOR in glucose and lipid metabolism. Int. J. Mol. Sci., 19: 2043.
  23. Matika O., Riggio V., Anselme-Moizan M., Law A.S., Pong-Wong R., Archibald A.L., Bishop S.C. (2016). Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genet. Sel. Evol., 48: 11.
  24. McRae K.M., Mcewan J.C., Dodds K.G., Gemmell N.J. (2014). Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genomics, 15: 637.
  25. Meyer, K. (2007). WOMBAT—A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B, 8; 815–821.10.1631/jzus.2007.B0815206495317973343
  26. Navarro Negredo P., Edgar J.R., Manna P.T., Antrobus R., Robinson M.S. (2018). The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat. Commun., 9: 596.
  27. Nicolazzi E.L., Caprera A., Nazzicari N., Cozzi P., Strozzi F., Lawley C., Pirani A., Soans C., Brew F., Jorjani H., Evans G., Simpson B., Tosser-Klopp G., Brauning R., Williams J.L., Stella A. (2015). SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics, 16: 283.
  28. Nishimura S., Watanabe T., Mizoshita K., Tatsuda K., Fujita T., Watanabe N., Sugimoto Y., Takasuga A. (2012). Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet., 13: 40.
  29. Oh W.J., Jacinto E. (2011). mTOR complex 2 signaling and functions. Cell Cycle, 10: 2305–2316.
  30. R Core Team (2013). R: A language and environment for statistical computing, R Foundation for Statistical Computing. Citeseer, Vienna, Austria.
  31. Raadsma H.W., Thomson P.C., Zenger K.R., Cavanagh C., Lam M.K., Jonas E., Jones M., Attard G., Palmer D., Nicholas F.W. (2009). Mapping quantitative trait loci (QTL) in sheep. I. A new male framework linkage map and QTL for growth rate and body weight. Genet. Sel. Evol., 41: 34.
  32. Riggio V., Matika O., Pong-Wong R., Stear M.J., Bishop S.C. (2013). Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity (Edinb), 110: 420–429.
  33. Santulli G. (2014). Angiopoietin-like proteins: A comprehensive look. Front. Endocrinol. (Lausanne), 5: 6.
  34. Setoguchi K., Furuta M., Hirano T., Nagao T., Watanabe T., Sugimoto Y., Takasuga A. (2009). Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet., 12: 43.
  35. Talebi M.A. (2012). Feed intake, feed efficiency, growth and their relationship with Kleiber ratio in Lori-Bakhtiari lambs. Arch. Zootech., 15: 33–39.
  36. Turner S.D. (2014). qqman: an R package for visualizing GWAS results using QQ and manhattan plots. BioRxiv, 3: 5165.
  37. VanRaden P.M., Van Tassell C.P., Wiggans G.R., Sonstegard T.S., Schnabel R.D., Taylor J.F., Schenkel F.S. (2009). Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci., 92: 16–24.
  38. Wang J., Zhou H., Hu J., Li S., Luo Y., Hickford J.G.H. (2016). Two single nucleotide polymorphisms in the promoter of the ovine myostatin gene (MSTN) and their effect on growth and carcass muscle traits in N ew Z ealand R omney sheep. J. Anim. Breed. Genet., 133: 219–226.
  39. Yang J., Lee S.H., Goddard M.E., Visscher P.M. (2011). GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet., 88: 76–82.
  40. Zamani P. (2017). Statistical properties of proportional residual energy intake as a new measure of energetic efficiency. J. Dairy Res., 84: 248–253.
  41. Zamani P., Miraei-Ashtiani S.R., Mohammadi H., 2008. Genetic parameters of residual energy intake and its correlations with other traits in Holstein dairy cattle. Turk. J. Vet. Anim. Sci., 32: 255-261.
  42. Zhang L., Liu J., Zhao F., Ren H., Xu L., Lu J., Zhang S., Zhang X., Wei C., Lu G., Zheng Y., Du L. (2013). Genome-wide association studies for growth and meat production traits in sheep. PLoS One, 8: e66569.
DOI: https://doi.org/10.2478/aoas-2020-0014 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 811 - 824
Submitted on: Sep 8, 2019
Accepted on: Jan 9, 2020
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Mohammad Almasi, Pouya Zamani, Seyed Ziaeddin Mirhoseini, Mohammad Hossein Moradi, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.