Aiello D., Patel K., Lasagna E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Gen. 49: 505-519. doi: 10.1111/age.1269610.1111/age.12696
Allais S., Journaux L., Levéziel H., Payet-Duprat N., Raynaud P., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Renand G. (2011). Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 89: 1-11.10.2527/jas.2010-3063
Allais S., Levéziel H., Payet-Duprat N., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Journaux L., Bonnot A., Renand G. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breads. J. Anim. Sci. 88: 446-454.10.2527/jas.2009-2385
Arrington D.D., Van Vleet T.R., Schnellmann R,G. (2006). Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol-Cell Ph 291: C1159-C1171.10.1152/ajpcell.00207.2006
Bellinge R.H.S., Liberles D.A., Iaschi S.P.A., O’Brien P.A., Tay G.K. (2005). Myostatin and its implications on animal breeding: a review. Anim. Gen. 36: 1-6.10.1111/j.1365-2052.2004.01229.x
Bennett G.L., Tait, Jr. R.G., Shackelford S.D., Wheeler T.L., King D.A., Casas E., Smith T.P.L. (2019). Enhanced estimates of carcass and meat quality effects for polymorphisms in myostatin and μ-calpain genes. J. Anim. Sci. 97: 569-577. doi: 10.1093/jas/sky45110.1093/jas/sky451
Boehm M.L., Kendall T.L., Thompson V.F., Goll D.E. (1998). Changes in the calpains and calpastatin during post mortem storage of bovine muscle. J. Anim. Sci.76: 2415-2434.10.2527/1998.7692415x
Bongiorni S., Valentini A., Chillemi G. (2016). Structural and dynamic characterization of the C313Y mutation in myostatin dimeric protein, responsible for the “double muscle” phenotype in Piedmontese cattle. Front. Genet.7:14. doi:10.3389/fgene.2016.0001410.3389/fgene.2016.00014
Bouyer C., Forestier L., Renand G., Oulmouden A. (2014). Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE 9(5): e97399. doi:10.1371/journal.pone.009739910.1371/journal.pone.0097399
Branciari R., Ceccobelli S., Di Lorenzo P., Ranucci D., Miraglia D., Codini M., Ceccarini M. R., Lasagna E. 2014. Characterization of muscle fibers in normal and hypertrophied Marchigiana beef cattle. J. Biotechnol. 185: S42.10.1016/j.jbiotec.2014.07.140
Calvo J.H., Iguácel L.P., Kirinus J.K., Serrano M., Ripoll G., Casasús I., Joy M., Pérez-Velasco L., Sarto P., Albertí P., Blanco M. (2014). A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci., 96, 2, Part A: 775-782.10.1016/j.meatsci.2013.10.003
Casas E., Keele J.W., Fahrenkrug S.C., Smith T.P., Cundiff L.V., Stone R.T. (1999). Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77: 1686-1692.10.2527/1999.7771686x
Chang L.Y., Pitchford W.S., Bottema C.D. K. (2014). Modeling tenderness for genetic and quantitative trait loci analyses. J. Anim. Sci. 92: 39-47.10.2527/jas.2013-6696
Chávez A., Pérez E.Rubio M.S., Méndez R.D., Delgado E.J., Díaz D. (2012). Chemical composition and cooking properties of beef forequarter muscles of Mexican cattle from different genotypes Meat Sci. 91, 2: 160-164.10.1016/j.meatsci.2012.01.010
Cheong H.S., Yoon D.H., Park B.L., Kim L.H., Bae J.S., Namgoong S., Lee H.W., Han Ch.S., Kim J.O., Cheong I.Ch., Shin H.D. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Gen. 9: 33.10.1186/1471-2156-9-33
Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate micro RNA target site in the myostatin gene affects muscularity in sheep. Nat. Gen. 38 (7): 813-818.10.1038/ng1810
Corva P., Soria L., Schor A., Villarreal E., Pérez Cenci M., Motter M., Mezzadra C., Melucci L., Miguel C., Paván E., Depetris G., Santini F., Grigera Naón J. (2007). Association of CAPN1 And CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Gen. Mol. Biol. 30 (4): 1064-1069.10.1590/S1415-47572007000600006
Curi R.A., Chardulo L.A.L., Mason M.C., Arrigoni M.D.B., Silveira A.C., de Oliveira H.N. (2009). Effect of single nucleotide polymorphisms of CAPN1 nd CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Gen. 40: 456-462.10.1111/j.1365-2052.2009.01859.x
Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L., Falaschini A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J. Biomed Biotechnol. ID 542945, doi: 10.1155/2010/542945.10.1155/2010/542945
Dunner S., Sevane N., García D., Cortés O., Valentini A., Williams J.L., Mangin B., Cañón J., Levéziel H., the GeMQual Consortium (2013). Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154: 34–44. doi:10.1016/j.livsci.2013.02.02010.1016/j.livsci.2013.02.020
Esmailizadeh A.K., Bottema C.D., Sellick G.S., Verbyla A.P., Morris C. A., Cullen N.G., Pitchford W.S. (2008). Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 86: 1038-1046.10.2527/jas.2007-0589
Gao Y., Zhang R., Hu X., Li N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77: 36-45.10.1016/j.meatsci.2007.03.026
Geesink G.H., Kuchay S., Chishti A.H., Koohmaraie M. (2006). l-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 84: 2834-2840.10.2527/jas.2006-122
Grobet L., Poncelet D., Royo L.J., Brouwers B., Pirottin D., Michaux C., Menissier F., Zanotti M., Dunner S., Georges M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 9: 210-213.10.1007/s003359900727
Harris S.E., Huff-Lonergan E., Lonergan S.M., Jones W.R., Rankins D. (2001). Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. J. Anim. Sci. 79: 666-667.10.2527/2001.793666x
Hickford J.G., Forrest R.H., Zhou H., Fang Q., Han J., Frampton C.M., Horrell A.L. (2009). Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Gen. 41 (1): 64-72.10.1111/j.1365-2052.2009.01965.x
Hill E. W., Gu J., Eivers S.S., Fonseca R.G., McGivney B.A., Govindarajan P., Orr N., Katz L.M., MacHugh D.E. (2010). A sequence polymorphism in MSTN predict sprinting ability and racing stamina in thoroughbred horses. PLOS One 5 (1): e8645.10.1371/journal.pone.0008645
Hirwa C.A., Wallace P., Shen X., Nie Q., Yang G., Zhang X. (2011). Genes related to economically important traits in beef cattle. Asian J. Anim. Sci. 5: 34-45.10.3923/ajas.2011.34.45
Hou G., Huang M., Gao X., Li J., Gao H., Ren H., Xu S. (2011a). Associations of calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr. J. Biotechnol. 10 (63): 13714-13718.10.5897/AJB11.338
Hou G.Y., Yuan Z.R., Zhou H.L., et al. (2011b). Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol. Biol. Rep., 38: 4705-4708.10.1007/s11033-010-0605-1
Iso-Touru T., Pesonen M., Fischer D., Huuskonen A., Sironen A. (2018). The effect of CAPN1 and CAST gene variations on meat quality traits in Finnish Aberdeen Angus and Nordic Red Cattle populations. Agr. Food. Sci. 27: 227-231.10.23986/afsci.75125
Juszczuk-Kubiak E., Rosochacki S. J., Wicińska K., Szreder T., Sakowski T. (2004a). A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim. Sci. Pap. Rep. 22 (2): 195-204.
Juszczuk-Kubiak E., Sakowski T., Flisikowski K., Wicińska K., Oprządek J., Rosochacki S. J. (2004b). Bovine μ-calpain (CAPN1) gene: new SNP within intron 14. J. App. Gen. 45 (4): 457-460.
Kambadur R., Sharma M., Smith T.P.L., Bass J.J. (1997). Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle. Genome Res. 7: 910-915.10.1101/gr.7.9.910
Kaplanová K., Dufek A., Dračková E., Simeonovová J., Šubrt J., Vrtková I., Dvořák J. 2013. The association of CAPN1, CAST, SCD and FASN polymorphisms with quality traits in commercial crossbread cattle in the Czech Republic. Czech J. Anim. Sci. 58 (11): 489-496.10.17221/7044-CJAS
Keane M.G., Dunne P.G., Kenny D.A., Berry D.P. (2011). Effect of genetic merit for carcass weight, breed type and slaughter weight on performance and carcass traits of beef x diary steers. Animal 5 (2): 182-194.10.1017/S1751731110001758
Kołczak T., Pałka K., Pośpiech E. (2003). Changes in collagen solubility of raw and roasted bovine psoas major and minor and semitendinosus muscles during cold storage. Pol. J. Food Nutr. Sci. 12/53: 57-61.
Koohmaraie M., Geesink G.H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 74: 34-43.10.1016/j.meatsci.2006.04.025
Lawrence T.E., Dikeman M.E., Hunt M.C., Kastner C.L., Johnson D.E. (2003a). Staged injection marination with calcium lactate, phosphate and salt may improve beef water-binding ability and palatability traits. Meat Sci. 65 (3): 967-972.10.1016/S0309-1740(02)00312-1
Lawrence T.E., Dikeman M.E., Stephens J.W., Obuz E., Davis J.R. (2003b). In situ investigation of the calcium-induced proteolytic and saltingin mechanisms causing tenderization in calcium-enhanced muscle. Meat Sci. 66: 69-75.10.1016/S0309-1740(03)00016-0
Li J., Zhang L.P., Gan Q.F., Li J.Y., Gao H.J., Yuan Z.R., Gao X., Chen J.B., Xu S.Z. (2010). Association of CAST gene polymorphisms with carcass and meat quality traits in Chinese commercial cattle herds. Asian-Australas. J. Anim. Sci. 23 (11): 1405-1411.10.5713/ajas.2010.90602
Li X., Ekerljung M., Lundström K., Lundén A. (2013). Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 94 (2): 153-158.10.1016/j.meatsci.2013.01.010
Lian T., Wang L., Liu Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Australas. J. Anim. Sci. 26 (3): 443-454. doi: https://doi.org/10.5713/ajas.2012.12365">https://doi.org/10.5713/ajas.2012.1236510.5713/ajas.2012.12365409347125049808
Liu X., Usman T., Wang Y., Wang Z., Xu X., Wu M., Zhang Y., Zhang X., Li1 Q., Liu L., Shi W., Qin C., Geng F., Wang C., Tan R., Huang X., Liu A., Wu1 H., Tan S., Yu Y. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas. J. Anim. Sci. 28 (4): 467-475.10.5713/ajas.13.0837434109525656186
Mach N., Bach A., Velarde A., Devant M. (2008). Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 78: 232-238.10.1016/j.meatsci.2007.06.021
Maddock K.R., Huff-Lonergan E., Rowe L.J., Lonergan S.M. (2005). Effect of pH and ionic strength on μ- and m-calpain inhibition by calpastatin. J. Anim. Sci. 83: 1370-1376.10.2527/2005.8361370x
Magolski J.D., Buchanan D.S., Maddock-Carlin K.R., Anderson V.L., Newman D.J., Berg E.P. (2013). Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness. Meat Sci. 95: 480-485.10.1016/j.meatsci.2013.05.024
McPherron A.C., Lee S.J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences USA 94: 12457-12461.10.1073/pnas.94.23.12457
Melody J.L., Lonergan S.M., Rowe L.J., Huiatt T.W., Mayes M.S., Huff-Lonergan E. (2004). Early post mortem biochemical factors influence tenderness and water – holding capacity of three porcine muscles. J. Anim. Sci. 82: 1195-1205.10.2527/2004.8241195x
Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin – deficient mice are small, brittle and hypocellular. Proceedings of the National Academy of Sciences of the United States of America 105: 388-393.10.1073/pnas.0707069105
Morris C.A., Cullen N.G., Hickey S.M., Dobbie P.M., Veenvliet B.A., Manley T.R., Pitchford W.S., Kruk Z.A., Bottema C.D.K., Wilson T. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford – cross cattle. Anim. Gen. 37: 411-414.10.1111/j.1365-2052.2006.01483.x
Oldham J.M., Martyn J. A.K., Sharma M., Jeanplong F., Kambadur R., Bass J.J. (2001). Molecular expresion of myostatin and MyoD is greater in double – muscled than normal – muscled cattle fetuses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: 1488-1493.10.1152/ajpregu.2001.280.5.R1488
Page B.T., Casas E., Heaton M.P., Cullent N.G., Hyndman D.L., Morris C.A., Crawford A.M., Wheeler T.L., Koohmaraie M., Keele J.W., Smith T.P.L. (2002). Evaluation of single-nucleotide polymorphism in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085.10.2527/2002.80123077x
Reardon W., Mullen A.M., Sweeney T., Hamill R.M. (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine m. longissimus and m. semimembranosus. Meat Sci. 86: 270-275.10.1016/j.meatsci.2010.04.013
Ribeca C, Bonfatti V, Cecchinato A, Albera A, Maretto F, Gallo L, Carnier P. (2013). Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle. Anim. Gen. 44: 193-196.10.1111/j.1365-2052.2012.02370.x
Ribeca C., Bonfatti V., Cecchinato A., Albera A., Gallo L., Carnier P. (2014). Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle. Meat Sci. 96: 1376-1383.10.1016/j.meatsci.2013.11.028
Sarti F. M., Lasagna E., Ceccobelli S., Di Lorenzo P., Filipini F., Sbarra F., Giontella A. (2014). Influence of single nucleotide polimorphism in myostatin and myogenic factor 5 muscle growth – related genes on the performance trait of Marchigiana beef cattle. J. Anim. Sci. 92: 3804-3810.10.2527/jas.2014-7669
Sevane N., Armstrong E., Cortés O., Wiener P., Pong Wong R. Dunner S., the Gem Qual Consortium. (2013). Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci. 94: 328-335.10.1016/j.meatsci.2013.02.014
Shelton G.D., Engvall E. (2007). Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul. Disord. 17: 721-722.10.1016/j.nmd.2007.06.008
Shi M., Gao X., Ren H., Yuan Z., Wu H., Li J., Zhang L., Gao H., Li J., Xu S. (2011). Association analysis of CAPN1 gene variants with carcass and meat quality traits in Chinese native cattle. Afr. J. Biotechnol. 10 (75): 17367-17371.10.5897/AJB11.2306
Singh U., Deb R., Alyethodi R.R., Alex R., Kumar S., Chakraborty S., Dhama K., Sharma A. (2014). Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine 6: 49-58.10.1016/j.bgm.2014.03.001
Spiller M. P., Kambadur R., Jeanplong F., Thomas M., Martyn J. K., Bass J. J., Sharma M. (2002). The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22 (20): 7066-7082.10.1128/MCB.22.20.7066-7082.2002
Tait, R.G.J.R., Shackelford, S.D., Wheeler, T.L., King, D.A., Keele, J.W., Casas, E., Smith, T.P.L., Bennett, G.L. (2014). Capn1, Cast, And Dgat1 Genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 92: 5382-5393.10.2527/jas.2014-8211
Tu P.A., Shiau J.W., Ding S.T., Lin E.C., Wu M.C., Wang P.H. (2012). The association of genetic variations in the promoter region of myostatin gene with growth traits in Duroc pigs. Anim. Biotechnol. 23: 291-298.10.1080/10495398.2012.709205
Wiener P., Woolliams J.A., Frank-Lawale A., Ryan M., Richardson R.I., Nute G.R., Wood J.D., Homer D., Williams J.L. (2009). The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83: 127-134. www.ncbi.nlm.nih.gov/gene/?term=bos%20taurus%20capn210.1016/j.meatsci.2009.04.01020416780
Xin J., Li-chun Z., Zhao-zhi L., Xiao-hui L., Hai-guo J., Chang-guo Y. (2011). Association of polymorphisms in the calpain I gene with meat quality traits in Yanbian yellow cattle of China. Asian-Australas. J. Anim. Sci. 24: 9-16.10.5713/ajas.2011.90407
Zhang R.F., Chen H., Lei C.Z., Zhang C.L., Lan X.Y., Zhang Y.D., Zhang H.J., Bao B., Niu H., Wang X.Z. (2007). Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds. Asian-Australas. J. Anim. Sci. 20 (12): 1798-1804.10.5713/ajas.2007.1798