Have a personal or library account? Click to login
Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review Cover

Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review

Open Access
|Aug 2020

References

  1. Aiello D., Patel K., Lasagna E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Gen. 49: 505-519. doi: 10.1111/age.1269610.1111/age.12696
  2. Allais S., Journaux L., Levéziel H., Payet-Duprat N., Raynaud P., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Renand G. (2011). Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. J. Anim. Sci. 89: 1-11.10.2527/jas.2010-3063
  3. Allais S., Levéziel H., Payet-Duprat N., Hocquette J.F., Lepetit J., Rousset S., Denoyelle C., Bernard-Capel C., Journaux L., Bonnot A., Renand G. (2010). The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breads. J. Anim. Sci. 88: 446-454.10.2527/jas.2009-2385
  4. Arrington D.D., Van Vleet T.R., Schnellmann R,G. (2006). Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol-Cell Ph 291: C1159-C1171.10.1152/ajpcell.00207.2006
  5. Bellinge R.H.S., Liberles D.A., Iaschi S.P.A., O’Brien P.A., Tay G.K. (2005). Myostatin and its implications on animal breeding: a review. Anim. Gen. 36: 1-6.10.1111/j.1365-2052.2004.01229.x
  6. Bennett G.L., Tait, Jr. R.G., Shackelford S.D., Wheeler T.L., King D.A., Casas E., Smith T.P.L. (2019). Enhanced estimates of carcass and meat quality effects for polymorphisms in myostatin and μ-calpain genes. J. Anim. Sci. 97: 569-577. doi: 10.1093/jas/sky45110.1093/jas/sky451
  7. Boehm M.L., Kendall T.L., Thompson V.F., Goll D.E. (1998). Changes in the calpains and calpastatin during post mortem storage of bovine muscle. J. Anim. Sci.76: 2415-2434.10.2527/1998.7692415x
  8. Bongiorni S., Valentini A., Chillemi G. (2016). Structural and dynamic characterization of the C313Y mutation in myostatin dimeric protein, responsible for the “double muscle” phenotype in Piedmontese cattle. Front. Genet.7:14. doi:10.3389/fgene.2016.0001410.3389/fgene.2016.00014
  9. Bouyer C., Forestier L., Renand G., Oulmouden A. (2014). Deep intronic mutation and pseudo exon activation as a novel muscular hypertrophy modifier in cattle. PLoS ONE 9(5): e97399. doi:10.1371/journal.pone.009739910.1371/journal.pone.0097399
  10. Branciari R., Ceccobelli S., Di Lorenzo P., Ranucci D., Miraglia D., Codini M., Ceccarini M. R., Lasagna E. 2014. Characterization of muscle fibers in normal and hypertrophied Marchigiana beef cattle. J. Biotechnol. 185: S42.10.1016/j.jbiotec.2014.07.140
  11. Brooks J.C., Savell J. (2004). Perimysium thickness as an indicator of beef tenderness. Meat Sci. 67: 329-334.10.1016/j.meatsci.2003.10.019
  12. Calvo J.H., Iguácel L.P., Kirinus J.K., Serrano M., Ripoll G., Casasús I., Joy M., Pérez-Velasco L., Sarto P., Albertí P., Blanco M. (2014). A new single nucleotide polymorphism in the calpastatin (CAST) gene associated with beef tenderness. Meat Sci., 96, 2, Part A: 775-782.10.1016/j.meatsci.2013.10.003
  13. Casas E., Keele J.W., Fahrenkrug S.C., Smith T.P., Cundiff L.V., Stone R.T. (1999). Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J. Anim. Sci. 77: 1686-1692.10.2527/1999.7771686x
  14. Chang L.Y., Pitchford W.S., Bottema C.D. K. (2014). Modeling tenderness for genetic and quantitative trait loci analyses. J. Anim. Sci. 92: 39-47.10.2527/jas.2013-6696
  15. Chávez A., Pérez E.Rubio M.S., Méndez R.D., Delgado E.J., Díaz D. (2012). Chemical composition and cooking properties of beef forequarter muscles of Mexican cattle from different genotypes Meat Sci. 91, 2: 160-164.10.1016/j.meatsci.2012.01.010
  16. Cheong H.S., Yoon D.H., Park B.L., Kim L.H., Bae J.S., Namgoong S., Lee H.W., Han Ch.S., Kim J.O., Cheong I.Ch., Shin H.D. (2008). A single nucleotide polymorphism in CAPN1 associated with marbling score in Korean cattle. BMC Gen. 9: 33.10.1186/1471-2156-9-33
  17. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., Bouix J., Caiment F., Elsen J.M., Eychenne F., Larzul C., Laville E., Meish F., Milenkovic D., Tobin J., Charlier C., Georges M. (2006). A mutation creating a potential illegitimate micro RNA target site in the myostatin gene affects muscularity in sheep. Nat. Gen. 38 (7): 813-818.10.1038/ng1810
  18. Corva P., Soria L., Schor A., Villarreal E., Pérez Cenci M., Motter M., Mezzadra C., Melucci L., Miguel C., Paván E., Depetris G., Santini F., Grigera Naón J. (2007). Association of CAPN1 And CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Gen. Mol. Biol. 30 (4): 1064-1069.10.1590/S1415-47572007000600006
  19. Crisà A., Marchitelli C., Savarese M.C., Valentini A. (2003). Sequence analysis of myostatin promoter in cattle. Cytogenet. Genome Res. 102: 48-52.10.1159/000075724
  20. Curi R.A., Chardulo L.A.L., Mason M.C., Arrigoni M.D.B., Silveira A.C., de Oliveira H.N. (2009). Effect of single nucleotide polymorphisms of CAPN1 nd CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim. Gen. 40: 456-462.10.1111/j.1365-2052.2009.01859.x
  21. Dall’Olio S., Fontanesi L., Nanni Costa L., Tassinari M., Minieri L., Falaschini A. (2010). Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types. J. Biomed Biotechnol. ID 542945, doi: 10.1155/2010/542945.10.1155/2010/542945
  22. Dunner S., Sevane N., García D., Cortés O., Valentini A., Williams J.L., Mangin B., Cañón J., Levéziel H., the GeMQual Consortium (2013). Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest. Sci. 154: 34–44. doi:10.1016/j.livsci.2013.02.02010.1016/j.livsci.2013.02.020
  23. Ekerljung M. (2012). Candidate gene effect on beef quality. Licentiate thesis. Swedish University of Agricultural Sciences Upsala.
  24. Esmailizadeh A.K., Bottema C.D., Sellick G.S., Verbyla A.P., Morris C. A., Cullen N.G., Pitchford W.S. (2008). Effects of the myostatin F94L substitution on beef traits. J. Anim. Sci. 86: 1038-1046.10.2527/jas.2007-0589
  25. Gao Y., Zhang R., Hu X., Li N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci. 77: 36-45.10.1016/j.meatsci.2007.03.026
  26. Geesink G.H., Kuchay S., Chishti A.H., Koohmaraie M. (2006). l-Calpain is essential for postmortem proteolysis of muscle proteins. J. Anim. Sci. 84: 2834-2840.10.2527/jas.2006-122
  27. Goll D.E., Thompson V.F., Li H.Q., Wei W., Cong J.Y. (2003). The calpain system. Physiol. Rev. 83: 731-801.10.1152/physrev.00029.2002
  28. Grobet L., Poncelet D., Royo L.J., Brouwers B., Pirottin D., Michaux C., Menissier F., Zanotti M., Dunner S., Georges M. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome 9: 210-213.10.1007/s003359900727
  29. Harris S.E., Huff-Lonergan E., Lonergan S.M., Jones W.R., Rankins D. (2001). Antioxidant status affects color stability and tenderness of calcium chloride-injected beef. J. Anim. Sci. 79: 666-667.10.2527/2001.793666x
  30. Hickford J.G., Forrest R.H., Zhou H., Fang Q., Han J., Frampton C.M., Horrell A.L. (2009). Polymorphisms in the ovine myostatin gene (MSTN) and their association with growth and carcass traits in New Zealand Romney sheep. Anim. Gen. 41 (1): 64-72.10.1111/j.1365-2052.2009.01965.x
  31. Hill E. W., Gu J., Eivers S.S., Fonseca R.G., McGivney B.A., Govindarajan P., Orr N., Katz L.M., MacHugh D.E. (2010). A sequence polymorphism in MSTN predict sprinting ability and racing stamina in thoroughbred horses. PLOS One 5 (1): e8645.10.1371/journal.pone.0008645
  32. Hirwa C.A., Wallace P., Shen X., Nie Q., Yang G., Zhang X. (2011). Genes related to economically important traits in beef cattle. Asian J. Anim. Sci. 5: 34-45.10.3923/ajas.2011.34.45
  33. Hou G., Huang M., Gao X., Li J., Gao H., Ren H., Xu S. (2011a). Associations of calpain 1 (CAPN1) and HRSP12 allelic variants in beef cattle with carcass traits. Afr. J. Biotechnol. 10 (63): 13714-13718.10.5897/AJB11.338
  34. Hou G.Y., Yuan Z.R., Zhou H.L., et al. (2011b). Association of thyroglobulin gene variants with carcass and meat quality traits in beef cattle. Mol. Biol. Rep., 38: 4705-4708.10.1007/s11033-010-0605-1
  35. Iso-Touru T., Pesonen M., Fischer D., Huuskonen A., Sironen A. (2018). The effect of CAPN1 and CAST gene variations on meat quality traits in Finnish Aberdeen Angus and Nordic Red Cattle populations. Agr. Food. Sci. 27: 227-231.10.23986/afsci.75125
  36. Jeanplong F., Sharma M., Somers W.G., Bass J.J., Kambadur R. (2001). Genomic organization and neonatal expression of the bovine myostatin gene. Mol. Cell. Biochem. 220: 31-37.10.1023/A:1010801511963
  37. Joulia-Ekaza D., Cabello G. (2006). Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp. Cell Res. 312: 2401-2414.10.1016/j.yexcr.2006.04.012
  38. Juszczuk-Kubiak E., Rosochacki S. J., Wicińska K., Szreder T., Sakowski T. (2004a). A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim. Sci. Pap. Rep. 22 (2): 195-204.
  39. Juszczuk-Kubiak E., Sakowski T., Flisikowski K., Wicińska K., Oprządek J., Rosochacki S. J. (2004b). Bovine μ-calpain (CAPN1) gene: new SNP within intron 14. J. App. Gen. 45 (4): 457-460.
  40. Kambadur R., Sharma M., Smith T.P.L., Bass J.J. (1997). Mutations in myostatin (GDF-8) in double muscled Belgian Blue and Piedmontese cattle. Genome Res. 7: 910-915.10.1101/gr.7.9.910
  41. Kaplanová K., Dufek A., Dračková E., Simeonovová J., Šubrt J., Vrtková I., Dvořák J. 2013. The association of CAPN1, CAST, SCD and FASN polymorphisms with quality traits in commercial crossbread cattle in the Czech Republic. Czech J. Anim. Sci. 58 (11): 489-496.10.17221/7044-CJAS
  42. Keane M.G., Dunne P.G., Kenny D.A., Berry D.P. (2011). Effect of genetic merit for carcass weight, breed type and slaughter weight on performance and carcass traits of beef x diary steers. Animal 5 (2): 182-194.10.1017/S1751731110001758
  43. Kołczak T., Pałka K., Pośpiech E. (2003). Changes in collagen solubility of raw and roasted bovine psoas major and minor and semitendinosus muscles during cold storage. Pol. J. Food Nutr. Sci. 12/53: 57-61.
  44. Koohmaraie M., Geesink G.H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci. 74: 34-43.10.1016/j.meatsci.2006.04.025
  45. Lawrence T.E., Dikeman M.E., Hunt M.C., Kastner C.L., Johnson D.E. (2003a). Staged injection marination with calcium lactate, phosphate and salt may improve beef water-binding ability and palatability traits. Meat Sci. 65 (3): 967-972.10.1016/S0309-1740(02)00312-1
  46. Lawrence T.E., Dikeman M.E., Stephens J.W., Obuz E., Davis J.R. (2003b). In situ investigation of the calcium-induced proteolytic and saltingin mechanisms causing tenderization in calcium-enhanced muscle. Meat Sci. 66: 69-75.10.1016/S0309-1740(03)00016-0
  47. Li J., Zhang L.P., Gan Q.F., Li J.Y., Gao H.J., Yuan Z.R., Gao X., Chen J.B., Xu S.Z. (2010). Association of CAST gene polymorphisms with carcass and meat quality traits in Chinese commercial cattle herds. Asian-Australas. J. Anim. Sci. 23 (11): 1405-1411.10.5713/ajas.2010.90602
  48. Li X., Ekerljung M., Lundström K., Lundén A. (2013). Association of polymorphisms at DGAT1, leptin, SCD1, CAPN1 and CAST genes with color, marbling and water holding capacity in meat from beef cattle populations in Sweden. Meat Sci. 94 (2): 153-158.10.1016/j.meatsci.2013.01.010
  49. Lian T., Wang L., Liu Y. (2013). A new insight into the role of calpains in post-mortem meat tenderization in domestic animals: A review. Asian-Australas. J. Anim. Sci. 26 (3): 443-454. doi: https://doi.org/10.5713/ajas.2012.12365">https://doi.org/10.5713/ajas.2012.1236510.5713/ajas.2012.12365409347125049808
  50. Liu X., Usman T., Wang Y., Wang Z., Xu X., Wu M., Zhang Y., Zhang X., Li1 Q., Liu L., Shi W., Qin C., Geng F., Wang C., Tan R., Huang X., Liu A., Wu1 H., Tan S., Yu Y. Polymorphisms in epigenetic and meat quality related genes in fourteen cattle breeds and association with beef quality and carcass traits. Asian-Australas. J. Anim. Sci. 28 (4): 467-475.10.5713/ajas.13.0837434109525656186
  51. Lozano M.S.R., Alfaro-Zavala S., Sifuentes-Rincón A.M., Parra-Bracamonte G.M., Varela D.B., Méndez Medina R.D., Linares C.P., Rincón F.R., Escalante A.S., Torrescano Urrutia G., Figueroa Saavedra F. (2016). Meat tenderness genetic and genomic variation sources in commercial beef cattle. J. Food Qual. 39: 150-156.10.1111/jfq.12185
  52. Mach N., Bach A., Velarde A., Devant M. (2008). Association between animal, transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 78: 232-238.10.1016/j.meatsci.2007.06.021
  53. Maddock K.R., Huff-Lonergan E., Rowe L.J., Lonergan S.M. (2005). Effect of pH and ionic strength on μ- and m-calpain inhibition by calpastatin. J. Anim. Sci. 83: 1370-1376.10.2527/2005.8361370x
  54. Magolski J.D., Buchanan D.S., Maddock-Carlin K.R., Anderson V.L., Newman D.J., Berg E.P. (2013). Relationship between commercially available DNA analysis and phenotypic observations on beef quality and tenderness. Meat Sci. 95: 480-485.10.1016/j.meatsci.2013.05.024
  55. McPherron A.C., Lee S.J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences USA 94: 12457-12461.10.1073/pnas.94.23.12457
  56. Melody J.L., Lonergan S.M., Rowe L.J., Huiatt T.W., Mayes M.S., Huff-Lonergan E. (2004). Early post mortem biochemical factors influence tenderness and water – holding capacity of three porcine muscles. J. Anim. Sci. 82: 1195-1205.10.2527/2004.8241195x
  57. Mendias C.L., Bakhurin K.I., Faulkner J.A. (2008). Tendons of myostatin – deficient mice are small, brittle and hypocellular. Proceedings of the National Academy of Sciences of the United States of America 105: 388-393.10.1073/pnas.0707069105
  58. Morris C.A., Cullen N.G., Hickey S.M., Dobbie P.M., Veenvliet B.A., Manley T.R., Pitchford W.S., Kruk Z.A., Bottema C.D.K., Wilson T. (2006). Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey × Limousin, Angus and Hereford – cross cattle. Anim. Gen. 37: 411-414.10.1111/j.1365-2052.2006.01483.x
  59. Mosher D.S., Quignon P., Bustamante C.D., Sutter N.B., Mellersh C.S., Parker H.G., Ostrander E.A., (2007). A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLOS Genetics 3 (5): e79.10.1371/journal.pgen.0030079
  60. Oldham J.M., Martyn J. A.K., Sharma M., Jeanplong F., Kambadur R., Bass J.J. (2001). Molecular expresion of myostatin and MyoD is greater in double – muscled than normal – muscled cattle fetuses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280: 1488-1493.10.1152/ajpregu.2001.280.5.R1488
  61. Page B.T., Casas E., Heaton M.P., Cullent N.G., Hyndman D.L., Morris C.A., Crawford A.M., Wheeler T.L., Koohmaraie M., Keele J.W., Smith T.P.L. (2002). Evaluation of single-nucleotide polymorphism in CAPN1 for association with meat tenderness in cattle. J. Anim. Sci. 80: 3077-3085.10.2527/2002.80123077x
  62. Pintos D., Corva P.M. (2011). Association between molecular markers for beef tenderness and growth traits in Argentinian Angus cattle. Anim. Gen. 42: 329-332. doi:10.1111/j.1365-2052.2010.02160.x10.1111/j.1365-2052.2010.02160.x21554351
  63. Purslow P.P. (2005). Intramuscular connective tissue and its role in meat quality. Meat Sci. 70 (3): 435-447.10.1016/j.meatsci.2004.06.028
  64. Reardon W., Mullen A.M., Sweeney T., Hamill R.M. (2010). Association of polymorphisms in candidate genes with colour, water-holding capacity, and composition traits in bovine m. longissimus and m. semimembranosus. Meat Sci. 86: 270-275.10.1016/j.meatsci.2010.04.013
  65. Resurreccion A.V.A. (2004). Sensory aspects of consumer choices for meat and meat products. Meat Sci. 66: 11-20.10.1016/S0309-1740(03)00021-4
  66. Ribeca C, Bonfatti V, Cecchinato A, Albera A, Maretto F, Gallo L, Carnier P. (2013). Association of polymorphisms in calpain 1, (mu/I) large subunit, calpastatin, and cathepsin D genes with meat quality traits in double-muscled Piemontese cattle. Anim. Gen. 44: 193-196.10.1111/j.1365-2052.2012.02370.x
  67. Ribeca C., Bonfatti V., Cecchinato A., Albera A., Gallo L., Carnier P. (2014). Effect of polymorphisms in candidate genes on carcass and meat quality traits in double muscled Piemontese cattle. Meat Sci. 96: 1376-1383.10.1016/j.meatsci.2013.11.028
  68. Sarti F. M., Lasagna E., Ceccobelli S., Di Lorenzo P., Filipini F., Sbarra F., Giontella A. (2014). Influence of single nucleotide polimorphism in myostatin and myogenic factor 5 muscle growth – related genes on the performance trait of Marchigiana beef cattle. J. Anim. Sci. 92: 3804-3810.10.2527/jas.2014-7669
  69. Sellick G.S., Pitchford W.S., Morris C.A., Cullen N.G., Crawford A.M., Raadsma H.W., Bottema C.D. (2007). Effect of myostatin F94L on carcass yield in cattle. Anim. Gen. 38: 440-446.10.1111/j.1365-2052.2007.01623.x
  70. Sevane N., Armstrong E., Cortés O., Wiener P., Pong Wong R. Dunner S., the Gem Qual Consortium. (2013). Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci. 94: 328-335.10.1016/j.meatsci.2013.02.014
  71. Shelton G.D., Engvall E. (2007). Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul. Disord. 17: 721-722.10.1016/j.nmd.2007.06.008
  72. Shi M., Gao X., Ren H., Yuan Z., Wu H., Li J., Zhang L., Gao H., Li J., Xu S. (2011). Association analysis of CAPN1 gene variants with carcass and meat quality traits in Chinese native cattle. Afr. J. Biotechnol. 10 (75): 17367-17371.10.5897/AJB11.2306
  73. Siegel P.M., Massagué J. (2003). Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer. 3: 807-821.10.1038/nrc1208
  74. Singh U., Deb R., Alyethodi R.R., Alex R., Kumar S., Chakraborty S., Dhama K., Sharma A. (2014). Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine 6: 49-58.10.1016/j.bgm.2014.03.001
  75. Spiller M. P., Kambadur R., Jeanplong F., Thomas M., Martyn J. K., Bass J. J., Sharma M. (2002). The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol. Cell. Biol. 22 (20): 7066-7082.10.1128/MCB.22.20.7066-7082.2002
  76. Tait, R.G.J.R., Shackelford, S.D., Wheeler, T.L., King, D.A., Keele, J.W., Casas, E., Smith, T.P.L., Bennett, G.L. (2014). Capn1, Cast, And Dgat1 Genetic effects on preweaning performance, carcass quality traits, and residual variance of tenderness in a beef cattle population selected for haplotype and allele equalization. J. Anim. Sci. 92: 5382-5393.10.2527/jas.2014-8211
  77. Tu P.A., Shiau J.W., Ding S.T., Lin E.C., Wu M.C., Wang P.H. (2012). The association of genetic variations in the promoter region of myostatin gene with growth traits in Duroc pigs. Anim. Biotechnol. 23: 291-298.10.1080/10495398.2012.709205
  78. Undarmaa B., Munkhtogtokh B., Davaakhuu L., Sergelen B., Nyamsuren B., Sodnom L. (2016). Sequencing Analysis of Myostatin Gene (MSTN) for Meat Cattle in Mongolia. JAST A 6: 429-434. doi: 10.17265/2161-6256/2016.06.00910.17265/2161-6256/2016.06.009
  79. Węglarz A. (2011). Effect of pre-slaughter housing of different cattle categories on beef quality. Anim. Sci. Pap. Rep. 29 (1): 43-52.
  80. Wiener P., Woolliams J.A., Frank-Lawale A., Ryan M., Richardson R.I., Nute G.R., Wood J.D., Homer D., Williams J.L. (2009). The effects of a mutation in the myostatin gene on meat and carcass quality. Meat Sci. 83: 127-134. www.ncbi.nlm.nih.gov/gene/?term=bos%20taurus%20capn210.1016/j.meatsci.2009.04.01020416780
  81. Xin J., Li-chun Z., Zhao-zhi L., Xiao-hui L., Hai-guo J., Chang-guo Y. (2011). Association of polymorphisms in the calpain I gene with meat quality traits in Yanbian yellow cattle of China. Asian-Australas. J. Anim. Sci. 24: 9-16.10.5713/ajas.2011.90407
  82. Zhang R.F., Chen H., Lei C.Z., Zhang C.L., Lan X.Y., Zhang Y.D., Zhang H.J., Bao B., Niu H., Wang X.Z. (2007). Association between Polymorphisms of MSTN and MYF5 Genes and Growth Traits in Three Chinese Cattle Breeds. Asian-Australas. J. Anim. Sci. 20 (12): 1798-1804.10.5713/ajas.2007.1798
DOI: https://doi.org/10.2478/aoas-2020-0006 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 757 - 774
Submitted on: May 15, 2019
Accepted on: Dec 13, 2019
Published on: Aug 1, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2020 Andrzej Węglarz, Anna Balakowska, Dominika Kułaj, Joanna Makulska, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.