Have a personal or library account? Click to login
Dietary Inclusion of Tenebrio Molitor Meal in Sea Trout Larvae Rearing: Effects on Fish Growth Performance, Survival, Condition, and GIT and Liver Enzymatic Activity
Aksnes A., Hope B., Jönsson E., Björnsson B.T., Albrektsen S. (2006). Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. I. Growth, growth regulation and feed utilization. Aquaculture, 261: 305–317.10.1016/j.aquaculture.2006.07.025
Alp A., Erer M., Kamalak A. (2010). Eggs incubation, early development, and growth in fry of brown trout (Salmo trutta macrostigma) and black sea trout (Salmo trutta labrax). Turkish J. Fish. Aquat. Sci., 10: 387–394.
Antonopoulou E., Nikouli E., Piccolo G., Gasco L., Gai F., Chatzifotis S., Men-te E., Kormas K.A. (2019). Reshaping gut bacterial communities after dietary Tenebrio molitor larvae meal supplementation in three fish species. Aquaculture, 503: 628–635.10.1016/j.aquaculture.2018.12.013
Arzel J., Mctailler R., Kerleguer C., Le Delliou H., Guillaume J. (1995). The protein requirement of brown trout (Salmo trutta) fry. Aquaculture, 130: 67–78.10.1016/0044-8486(94)00201-X
Baeverfjord G., Krogdahl A. (1996). Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J. Fish Dis., 19: 375–38710.1111/j.1365-2761.1996.tb00376.x
Belforti M., Gai F., Lussiana C., Renna M., Malfatto V., Rotolo L., De Marco M., Dabbou S., Schiavone A., Zoccarato I., Gasco L. (2015). Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci., 14: 670–676.10.4081/ijas.2015.4170
Chalamaiah M., Kumar B.D., Hemalatha R., Jyothirmayi T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem., 135: 3020–3038.10.1016/j.foodchem.2012.06.100
CITES,UNEP-WCMC. (2017). The Checklist of CITES Species Website. Appendices I, II and III valid from 04 April 2017. CITES Secretariat, Geneva, Switzerland. Compiled by UNEP-WCMC, Cambridge, UK.
Dąbrowski K., Poczyczynski P., Köck B., Berger B. (1989). Effect of partially or totally replacing fish meal protein by soybean meal protein on growth, food utilization and proteolytic enzyme activities in rainbow trout (Salmo gairdneri). New in vivo test for exocrine pancreatic secretion. Aquaculture, 77: 29–49.10.1016/0044-8486(89)90019-7
Domagała J., Dziewulska K., Czerniawski R. (2014). Survival rate and growth in the wild of sea trout (Salmo trutta L.) fry obtained using frozen semen. Arch. Pol. Fish., 22: 265–270.10.2478/aopf-2014-0028
Farhangi M., Carter C.G. (2001). Growth, physiological and immunological responses of rainbow trout (Oncorhynchus mykiss) to different dietary inclusion levels of dehulled lupin (Lupinus angustifolius). Aquacult. Res. 32 (Suppl. 1): 329–340.10.1046/j.1355-557x.2001.00044.x
Fraser D.J. (2008). How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol. Appl. 1: 535–586.10.1111/j.1752-4571.2008.00036.x
Frøystad M.K., Lilleeng E., Sundby A., Krogdahl A. (2006). Cloning and characterization of alpha-amylase from Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 45: 479–492.10.1016/j.cbpa.2006.08.003
Furné M., Hidalgo M.C., López A., García-Gallego M., Morales A.E., Domezai-né J., Sanz A. (2005). Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture, 250: 391–398.10.1016/j.aquaculture.2005.05.017
Furné M., García-Gallego M., Hidalgo M.C., Morales A.E., Domezain A., Do-mezain J., Sanz A. (2008). Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. A Mol. Integr. Physiol., 149: 420–425.10.1016/j.cbpa.2008.02.002
Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Lussiana C., Anto-nopoulou E., Mola P., Chatzifotis S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol., 220: 34–45.10.1016/j.anifeedsci.2016.07.003
Gilbert E.R., Wong E.A., Webb K.E. (2008). Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci., 86: 2135–2155.10.2527/jas.2007-0826
Gildberg A., Johansen A., Bøgwald J. (1995). Growth and survival of Atlantic salmon (Salmo salar) fry given diets supplemented with fish protein hydrolysate and lactic acid bacteria during a challenge trial with Aeromonas salmonicida. Aquaculture, 138: 23–34.10.1016/0044-8486(95)01144-7
González J.D., Caballero A., Viegas I., Metón I., Jones J.G., Barra J., Fernán-dez F., Baanante I.V. (2012). Effects of alanine aminotransferase inhibition on the intermediary metabolism in Sparus aurata through dietary amino-oxyacetate supplementation. Br. J. Nutr., 107: 1747–1756.10.1017/S000711451100496X
Hamre K., Yúfera M., Rønnestad Boglione C., Conceição L.E.C., Izquierdo M. (2013). Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquacult., 4: 526–558.10.1111/j.1753-5131.2012.01086.x
Hansen T. (1985). Artificial hatching substrate: effect on yolk absorption, mortality and growth during first feeding of sea trout (Salmo trutta). Aquaculture, 46: 275–285.10.1016/0044-8486(85)90105-X
Hardy R.W., Barrows F.T. (2002). Diet formulation and manufacture. In: Fish Nutrition, Hal- ver J.E., Hardy R.W. (eds). 3rd ed. Academic Press Inc., San Diego, CA, USA, pp. 506–601.
Hasan M.R. (2001). Nutrition and feeding for sustainable aquaculture development in the third millennium. In: Aquaculture in the Third Millennium, Subasinghe R.P., Bueno P., Phillip M.J., Hough C., McGladdery S.E., Arthur J.R. (eds). Technical Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand, 20-25 February 2000. NACA, Bangkok and FAO, Rome, pp. 193–219.
Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22.10.1016/j.anifeedsci.2015.03.001
Hevrøy E.M., Espe M., Waagbø R., Sandnes K., Ruud M., Hemre G.-I. (2005). Nutrient utilization in Atlantic salmon (Salmo salar L.) fed increased levels of fish protein hydrolysate during a period of fast growth. Aquacult. Nutr., 11: 301–313.10.1111/j.1365-2095.2005.00357.x
Hidalgo M.C., Urea E., Sanz A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170: 267–283.10.1016/S0044-8486(98)00413-X
Kaushik S.J., Cravedi J.P., Lalles J.P., Sumpter J., Fauconneau B., Laroche M. (1995). Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture, 133: 257–274.10.1016/0044-8486(94)00403-B
Le Féon S., Thévenot A., Maillard F., Macombe C., Forteau L., Aubin J. (2019). Life cycle assessment of fish fed with insect meal: Case study of mealworm inclusion in trout feed, in France. Aquaculture, 500: 82–91.10.1016/j.aquaculture.2018.06.051
Leary S., Underwood W., Anthony R., Cartner S., Corey D., Grandin T., Greena-cre C., Gwaltney-Brant S., Mc Crackin M.A., Meyer R., Miller D., Shearer J., Yanong R. (2013). AVMA guidelines for the euthanasia of animals: 2013 edition, pp. 32.
Li Q., Zheng L., Qiu N., Cai H., Tomberlin J.K., Yu Z. (2011). Bioconversion of dairy manure by black soldier fly (Diptera: Stratiomyidae) for biodiesel and sugar production. Waste Manage., 31: 1316–1320.10.1016/j.wasman.2011.01.005
Murray A.L., Pascho R.J.Alcorn S.W., Fairgrieve W.T., Shearer K.D., Roley D. (2003). Effects of various feed supplements containing fish protein hydrolysate or fish processing by-products on the innate immune functions of juvenile coho salmon (Oncorhynchus kisutch). Aquaculture, 220: 643–653.10.1016/S0044-8486(02)00426-X
Ng W.-K., Liew F.-L., Ang L.-P., Wong K.-W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquacult. Res., 32 (Suppl. 1): 273–280.10.1046/j.1355-557x.2001.00024.x
NRC, National Research Council (1981). Nutrient requirements of coldwater fishes (Nutrient requirements of domestic animals). National Academy Press, Washington DC.
Oonincx D.G.A.B, van Itterbeeck J., Heetkamp M.J.W., vanden Brand H., van Loon J.J.A., van Huis A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS One, DOI:10.1371/journal. pone.0014445.10.1371/journal.pone.0014445
Ovissipour M., Benjakul S., Safari R., Motamedzadegan A. (2010). Fish protein hydrolysates production from fin tuna Thunnus albacares head using Alcalase and Protamex. Intern. Aqua. Res., 2: 87–95.
Pasupuleti V.K., Braun S. (2010). State of the Art Manufacturing of Protein Hydrolysates, Chapter II. In: Protein hydrolysated in Biotechnology, Pasupuleti V.K., Demain A.L. (eds), pp. 11–32.10.1007/978-1-4020-6674-0_2
Penn M.H., Bendiksen E.A., Campbell P., Krogdahl A. (2011). High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture, 310: 267–273.10.1016/j.aquaculture.2010.10.040
Refstie S., Olli J.J., Standald H. (2004). Feed intake, growth, and protein utilisation by post-smolt Atlantic salmon (Salmo salar) in response to graded levels of fish protein hydrolysate in the diet. Aquaculture, 239: 331–349.10.1016/j.aquaculture.2004.06.015
Refstie S., Bakke A.M., Petcare M., Penn M.H., Sundby A., Shearer K., Krog-dahl A. (2006 a). Capacity for digestive hydrolysis and amino acid absorption in Atlantic salmon (Salmo salar) fed diets with soybean meal or inulin or without addition of antibiotics. Aquaculture, 261: 392–406.10.1016/j.aquaculture.2006.08.005
Refstie S., Glencross B., Landsverk T., Sørensen M., Lilleeng E., Hawkins W., Krogdahl A. (2006 b). Digestive function and intestinal integrity in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leafed lupins. Aqua-culture, 261: 1382–1395.10.1016/j.aquaculture.2006.07.046
Rumpold B.A., Klocke M., Schlüter O. (2017). Insect biodiversity: underutilized bioresource for sustainable applications in life sciences. Reg. Environ. Change, 17: 1445–1454.10.1007/s10113-016-0967-6
Sajjadi M., Carter C.G. (2004). Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar, L.). Aquacult. Nutr., 10: 135–142.10.1111/j.1365-2095.2003.00290.x
Sandnes K., Lie Ø., Waagbø R. (1988). Normal ranges of some blood chemistry parameters in adult farmed Atlantic salmon, Salmo salar. J. Fish Biol., 32: 129–136.10.1111/j.1095-8649.1988.tb05341.x
Santigosa E., Sánchez J., Médale F., Kaushik S., Pérez-Sánchez J., Gallar-do M.A. (2008). Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aqua-culture, 282: 68–74.10.1016/j.aquaculture.2008.06.007
Sánchez-Muros M., García-Rejón L., García-Salguero L., dela Higuera M., Lupiáñez J.A. (1998). Long-term nutritional effects on the primary liver and kidney metabolism in rainbow trout. Adaptive response to starvation and a high-protein, carbohydrate-free diet on glutamate dehydrogenase and alanine aminotransferase kinetics. Int. J. Biochem. Cell Biol., 30: 55–63.10.1016/S1357-2725(97)00100-3
Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod., 65: 16–27.10.1016/j.jclepro.2013.11.068
Storebakken T. (2002). Atlantic salmon, Salmo salar. In: Nutrient Requirements and Feeding of Finfish for Aquaculture, Webster C. (ed.). Aquaculture Research Center, Kentucky State University, USA, Chhorn Lim, USDA-ARS, Fish Diseases and Parasites Research Laboratory, Auburn, Alabama, USA.
Su J., Gong Y., Cao S., Lu F., Han D., Liu H., Jin J., Yang X., Zhu X., Xie S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immun., 69: 59–66.10.1016/j.fsi.2017.08.008
Torrissen K.R., Lied E., Espe M. (1994). Differences in digestion and absorption of dietary protein in Atlantic salmon (Salmo salar) with genetically different trypsin isozymes. J. Fish Biol., 45: 1087–1104.10.1111/j.1095-8649.1994.tb01075.x
Van Huis A., Van Itterbeeck J., Klunder H., Mertens E., Halloran A., Muir G., Vantomme P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations. Forestry Paper No. 171. Rome, 2013.
Vercruysse L., Smagghe G., Beckers T., Van Camp J. (2009). Antioxidative and ACE inhibitory activities in enzymatic hydrolysates of the cotton leafworm, Spodoptera littoralis. Food Chem., 114: 38–43.10.1016/j.foodchem.2008.09.011
Was A., Wenne R. (2002). Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci. Aquaculture, 204: 493–506.10.1016/S0044-8486(01)00835-3
Witkowski A., Kotusz J., Przybylski M. (2009). The degree of threat to the freshwater ichthyofauna of Poland: Red list of fishes and lampreys – situation in 2009 (in Polish). Chrońmy Przyrodę Ojczystą, 65: 33–52.
Zheng K., Liang M., Yao H., Wang J., Chang Q. (2012). Effect of dietary fish protein hydro-lysate on growth, feed utilization and IGF-1 levels in Japanese flounder (Paralichthys olivaceus). Aquacult. Nutr., 18: 297–303.10.1111/j.1365-2095.2011.00896.x