Have a personal or library account? Click to login

Polymorphisms in JAK2 Gene are Associated with Production Traits and Mastitis Resistance in Dairy Cattle

Open Access
|May 2020

References

  1. Baxter E.J., Scott L.M., Campbell P.J., East C., Fourouclas N., Swanton S., Vas-siliou G.S., Bench A.J., Boyd E.M., Curtin N., Scott M.A. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet, 365: 1054–1061.10.1016/S0140-6736(05)71142-9
  2. Bole-Feysot C., Goffin V., Edery M., Binart N., Kelly P.A. (1998). Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev., 19: 225–268.10.1210/edrv.19.3.0334
  3. Brooks A.J., Dai W., O’Mara M.L., Abankwa D., Chhabra Y., Pelekanos R.A., Gar-don O., Tunny K.A., Blucher K.M., Morton C.J., Parker M.W. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science, 344: 1249783.10.1126/science.1249783
  4. Chen X., Chen X., Xu Y., Yang W., Wu N., Ye H., Yang J.Y., Hong Q., Xin Y., Yang M.Q., Deng Y. (2016). Association of six CpG-SNPs in the inflammation-related genes with coronary heart disease. Hum. Genomics, 10: 21.10.1186/s40246-016-0067-1
  5. Dayeh T.A., Olsson A.H., Volkov P., Almgren P., Rönn T., Ling C. (2013). Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia, 56: 1036–1046.10.1007/s00125-012-2815-7
  6. Deaton A.M., Bird A. (2011). CpG islands and the regulation of transcription. Genes Dev., 25: 1010–1022.10.1101/gad.2037511
  7. Etherton T.D., Bauman D.E. (1998). Biology of somatotropin in growth and lactation of domestic animals. Physiol. Rev., 78: 745–761.10.1152/physrev.1998.78.3.745
  8. Ferguson L.R., Han D.Y., Fraser A.G., Huebner C., Lam W.J., Morgan A.R., Duan H., Karunasinghe N. (2010). Genetic factors in chronic inflammation: single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat. Res., 690: 108–115.10.1016/j.mrfmmm.2010.01.017
  9. Fonseca I., Silva P.V., Lange C.C., Guimarães M.F., Weller M.M.D.C.A., Sousa K.R.S., Lopes P.S., Guimarães J.D., Guimarães S.E. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32: 776–781.10.1590/S1415-47572009005000074
  10. Harlid S., Ivarsson M.I., Butt S., Hussain S., Grzybowska E., Eyfjörd J.E., Len-ner P., Försti A., Hemminki K., Manjer J., Dillner J. (2011). A candidate CpG SNP approach identifies a breast cancer associated ESR1-SNP. Int. J. Cancer, 129: 1689–1698.10.1002/ijc.25786
  11. Huang Y., Tan H., Cao Q., Yuan G., Su G., Yang P. (2019). Different methylation of CpGSNPs in Behcet’s disease. Biomed. Res. Int., 2: 1–7.10.1155/2019/3489305
  12. Jo B.S., Choi S.S. (2015). Introns: the functional benefits of introns in genomes. Genom. Inf., 13: 112–118.10.5808/GI.2015.13.4.112
  13. Khan A., Mushtaq M.H., Ahmad D., Ud M., Chaudhry M., Khan A.W. (2015). Prevalence of clinical mastitis in bovines in different climatic conditions in KPK (Pakistan). Sci. Int., 27: 2289–2293.
  14. Koestler D.C., Chalise P., Cicek M.S., Cunningham J.M., Armasu S., Larson M.C., Chien J., Block M., Kalli K.R., Sellers T.A., Fridley B.L (2014). Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer. BMC Med. Genomics, 7: 8.10.1186/1755-8794-7-8
  15. Li X., Park W.J., Pyeritz R.E., Jabs E.W. (1995). Effect on splicing of a silent FGFR2 mutation in Crouzon Syndrome. Nat. Genet., 9: 232–233.10.1038/ng0395-232
  16. Mdegela R.H., Ryoba R., Karimuribo E.D., Phiri E.J., Løken T., Reksen O., Mten-geti E., Urio N.A. (2009). Prevalence of clinical and subclinical mastitis and quality of milk on smallholder dairy farms in Tanzania. J. S. Afr. Vet. Assoc., 80: 163–168.10.4102/jsava.v80i3.195
  17. Millar D.S., Horan M., Chuzhanova N.A., Cooper D.N. (2010). Characterisation of a functional intronic polymorphism in the human growth hormone (GHI) gene. Hum. Genom., 4: 289–301.10.1186/1479-7364-4-5-289
  18. Nackley A.G., Shabalina S.A., Tchivileva I.E., Satterfield K., Korchynskyi O., Makarov S.S., Maixner W., Diatchenko L. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science, 314: 1930–1933.10.1126/science.1131262
  19. O’Shea J.J., Schwartz D.M., Villarino A.V., Gadina M., Mc Innes I.B., Lauren-ce A. (2015). The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med., 66: 311–328.10.1146/annurev-med-051113-024537
  20. Pant S.D., Schenkel F.S., Leyva-Baca I., Sharma B.S., Karrow N.A. (2007). Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins. BMC Genomics, 8: 421.10.1186/1471-2164-8-421
  21. Parmley J.L., Hurst L.D. (2007). How do synonymous mutations affect fitness? Bioessays, 29: 515–519.10.1002/bies.2059217508390
  22. Patnaik S., Prasad A., Ganguly S. (2013). Mastitis, an infection of cattle udder: A review. J. Chem. Biol. Physical Sci., 3: 2676–2678.
  23. Richard I., Beckmann J.S. (1995). How neutral are synonymous codon mutations? Nat. Genet, 10: 259.10.1038/ng0795-259
  24. Rupp R., Boichard D. (2003). Genetics of resistance to mastitis in dairy cattle. Vet. Res., 34: 671–688.10.1051/vetres:2003020
  25. Sauna Z.E., Kimchi-Sarfaty C. (2013). Synonymous mutations as a cause of human genetic disease. In: eLS, John Wiley & Sons, Ltd: Chichester. doi: 10.1002/9780470015902.a002517310.1002/9780470015902.a0025173
  26. Saxonov S., Berg P., Brutlag D.L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl. Acad. Sci. USA, 103: 1412–1417.10.1073/pnas.0510310103
  27. Seegers H., Fourichon C., Beaudeau F. (2003). Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res., 34: 475–491.10.1051/vetres:2003027
  28. Shoemaker R., Deng J., Wang W., Zhang K. (2010). Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res., 20: 883–889.10.1101/gr.104695.109
  29. Sigl T., Meyer H.H.D., Wiedemann S. (2014). Gene expression analysis of protein synthesis pathways in bovine mammary epithelial cells purified from milk during lactation and short-term restricted feeding. J. Anim. Physiol. Anim. Nutr., 98: 84–95.10.1111/jpn.12039
  30. Sordillo L.M., Streicher K.L. (2002). Mammary gland immunity and mastitis susceptibility. J. Mammary Gland Biol. Neoplasia, 7: 135–146.10.1023/A:1020347818725
  31. Szewczuk M. (2015). Association of a genetic marker at the bovine Janus kinase 2 locus (JAK2/RsaI) with milk production traits of four cattle breeds. J. Dairy Res., 82: 287–292.10.1017/S0022029915000291
  32. Usman T., Yu Y., Liu C., Wang X., Zhang Q., Wang Y. (2014). Genetic effects of single nucleotide polymorphisms in JAK2 and STAT5A genes on susceptibility of Chinese Holsteins to mastitis. Mol. Biol. Rep., 41: 8293–8301.10.1007/s11033-014-3730-4
  33. Usman T., Wang Y., Liu C., Wang X., Zhang Y., Yu Y. (2015). Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim. Genet., 46: 371–380.10.1111/age.12306
  34. Vaz-Drago R., Custódio N., Carmo-Fonseca M. (2017). Deep intronic mutations and human disease. Hum. Genet., 136: 1093–1111.10.1007/s00439-017-1809-4
  35. Villarino A.V., Kanno Y., Ferdinand J.R., O‘Shea J.J. (2015). Mechanisms of JAK/STAT signaling in immunity and disease. J. Immunol., 194: 21–27.10.4049/jimmunol.1401867
  36. Zhong Y., Wu J., Ma R., Cao H., Wang Z., Ding J., Cheng L., Feng J., Chen B. (2012). Association of Janus kinase 2 (JAK2) polymorphisms with acute leukemia susceptibility. Int. J. Lab. Hematol., 34: 248–253.10.1111/j.1751-553X.2011.01386.x
DOI: https://doi.org/10.2478/aoas-2019-0082 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 409 - 423
Submitted on: Apr 3, 2019
Accepted on: Nov 7, 2019
Published on: May 4, 2020
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Nawab Ali, Sadaf Niaz, Naimat Ullah Khan, Ali Gohar, Irfan Khattak, Yixin Dong, Tariq Khattak, Iftikhar Ahmad, Yachun Wang, Tahir Usman, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.