Have a personal or library account? Click to login
Enhancement of in Vitro Developmental Outcome of Cloned Goat Embryos After Epigenetic Modulation of Somatic Cell-Inherited Nuclear Genome with Trichostatin A Cover

Enhancement of in Vitro Developmental Outcome of Cloned Goat Embryos After Epigenetic Modulation of Somatic Cell-Inherited Nuclear Genome with Trichostatin A

Open Access
|Jan 2020

References

  1. Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Singla S.K., Manik R.S. (2018). Epigenetic alteration of donor cells with histone deacetylase inhibitor m-carboxycinnamic acid bishydroxymide improves the in vitro developmental competence of buffalo (Bubalus bubalis) cloned embryos. Cell. Reprogram., 20: 76–88.10.1089/cell.2017.0035
  2. Chies J.M., Polejaeva I.A., Rodrigues J.L., Forell F., Bertolini L.R., Bertolini M. (2016). Developmental outcome and related abnormalities in goats: comparison between somatic cell nuclear transfer- and in vivo-derived concepti during pregnancy through term. Cell. Reprogram., 18: 264–279.
  3. Deng M., Ren C., Liu Z., Zhang G., Wang F., Wan Y. (2017). Epigenetic status of H19-Igf2 imprinted genes and loss of 5-hydroxymethylcytosine in the brain of cloned goats. Cell. Reprogram., 19: 199–207.10.1089/cell.2016.0049
  4. Ding X., Wang Y., Zhang D., Wang Y., Guo Z., Zhang Y. (2008). Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2’-deoxycytidine and trichostatin A. Theriogenology, 70: 622–630.10.1016/j.theriogenology.2008.04.042
  5. Eilertsen K.J., Power R.A., Harkins L.L., Misica P. (2007). Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci., 98: 129–146.10.1016/j.anireprosci.2006.10.019
  6. Fan Z., Yang M., Regouski M., Polejaeva I.A. (2019). Gene knockouts in goats using CRISPR/Cas9 system and somatic cell nuclear transfer. Methods Mol. Biol., 1874: 373–390.10.1007/978-1-4939-8831-0_22
  7. Fernandes C.C.L., Aguiar L.H., Calderón C.E.M., Silva A.M., Alves J.P.M., Rossetto R., Bertolini L.R., Bertolini M., Rondina D. (2018). Nutritional impact on gene expression and competence of oocytes used to support embryo development and livebirth by cloning procedures in goats. Anim. Reprod. Sci., 188: 1–12.10.1016/j.anireprosci.2017.10.012
  8. Gupta M.K., Heo Y.T., Kim D.K., Lee H.T., Uhm S.J. (2019). 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim. Reprod. Sci., 208: 106118.10.1016/j.anireprosci.2019.106118
  9. Hosseini S.M., Dufort I., Nieminen J., Moulavi F., Ghanaei H.R., Hajian M., Jafarpour F., Forouzanfar M., Gourbai H., Shahverdi A.H., Nasr-Esfahani M.H., Sirard M.A. (2016). Epigenetic modification with trichostatin A does not correct specific errors of somatic cell nuclear transfer at the transcriptomic level; highlighting the non-random nature of oocyte-mediated reprogramming errors. BMC Genomics, 17: 16.10.1186/s12864-015-2264-z
  10. Huan Y., Wu Z., Zhang J., Zhu J., Liu Z., Song X. (2015). Epigenetic modification agents improve gene-specific methylation reprogramming in porcine cloned embryos. PLoS One, 10 (6): e0129803.10.1371/journal.pone.0129803
  11. Iager A.E., Ragina N.P., Ross P.J., Beyhan Z., Cunniff K., Rodriguez R.M., Cibelli J.B. (2008). Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos. Cloning Stem Cells, 10: 371–379.10.1089/clo.2007.0002
  12. Jia R., Zhang G., Fan Y., Zhou Z., Wan Y., Zhang Y., Wang Z., Wang F. (2017). MBD1 and MeCP2 expression in embryos and placentas from transgenic cloned goats. Zygote, 25: 462–471.10.1017/S0967199417000284
  13. Jin J.X., Lee S., Taweechaipaisankul A., Kim G.A., Lee B.C. (2017). The HDAC inhibitor LAQ824 enhances epigenetic reprogramming and in vitro development of porcine SCNT embryos. Cell. Physiol. Biochem., 41: 1255–1266.10.1159/000464389
  14. Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.10.1089/cell.2018.0001
  15. Kishigami S., Mizutani E., Ohta H., Hikichi T., Thuan N.V., Wakayama S., Bui H.T., Wakayama T. (2006). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun., 340: 183–189.10.1016/j.bbrc.2005.11.164
  16. Kumar D., Sarkhel B.C. (2017). Differential expression pattern of key regulatory developmental genes in pre-implant zona free cloned vs in vitro fertilized goat embryos. Gene Expr. Patterns, 25–26: 118–123.10.1016/j.gep.2017.06.011
  17. Liu Y., Wu F., Zhang L., Wu X., Li D., Xin J., Xie J., Kong F., Wang W., Wu Q., Zhang D., Wang R., Gao S., Li W. (2018). Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics, 19: 734.10.1186/s12864-018-5091-1
  18. Loi P., Iuso D., Czernik M., Ogura A. (2016). A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol., 34: 791–797.10.1016/j.tibtech.2016.03.008
  19. Lu R., Zhang T., Wu D., He Z., Jiang L., Zhou M., Cheng Y. (2018). Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res., 27: 343–354.10.1007/s11248-018-0080-3
  20. Mao T., Han C., Deng R., Wei B., Meng P., Luo Y., Zhang Y. (2018). Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development. Syst. Biol. Reprod. Med., 64: 174–182.10.1080/19396368.2018.1446229
  21. Martins L.T., Neto S.G., Tavares K.C., Calderón C.E., Aguiar L.H., Lazzarotto C.R., Ongaratto F.L., Rodrigues V.H., Carneiro Ide S., Rossetto R., Almeida A.P., Fernandes C.C., Rondina D., Dias A.C., Chies J.M., Polejaeva IA., Rodrigues J.L., Forell F., Bertolini L.R., Bertolini M. (2016). Developmental outcome and related abnormalities in goats: comparison between somatic cell nuclear transfer- and in vivo-derived concepti during pregnancy through term. Cell. Reprogram., 18: 264–279.10.1089/cell.2015.0082
  22. Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.10.1016/j.theriogenology.2017.04.022
  23. Qiu X., You H., Xiao X., Li N., Li Y. (2017). Effects of trichostatin A and PXD101 on the in vitro development of mouse somatic cell nuclear transfer embryos. Cell. Reprogram., 19: 1–9.10.1089/cell.2016.0030
  24. Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78: 1869–1886.10.1016/j.theriogenology.2012.05.030
  25. Saini M., Selokar N.L., Revey T., Singla S.K., Chauhan M.S., Palta P., Madan P. (2014). Trichostatin A alters the expression of cell cycle controlling genes and microRNAs in donor cells and subsequently improves the yield and quality of cloned bovine embryos in vitro. Theriogenology, 82: 1036–1042.10.1016/j.theriogenology.2014.07.027
  26. Saini M., Selokar N.L., Agrawal H., Singla S.K., Chauhan M.S., Manik R.S., Palta P. (2017). Treatment of donor cells and reconstructed embryos with a combination of trichostatin-A and 5-aza-2’-deoxycytidine improves the developmental competence and quality of buffalo embryos produced by handmade cloning and alters their epigenetic status and gene expression. Cell. Reprogram., 19: 208–215.10.1089/cell.2016.0061
  27. Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.10.22358/jafs/67408/2004
  28. Samiec M., Skrzyszowska M. (2010). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.
  29. Samiec M., Skrzyszowska M. (2011). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.10.2478/v10181-011-0050-7
  30. Samiec M., Skrzyszowska M. (2012). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.
  31. Samiec M., Skrzyszowska M. (2018 a). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015
  32. Samiec M., Skrzyszowska M. (2018 b). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.10.24425/119040
  33. Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int., 2015: 814686.10.1155/2015/814686
  34. Samiec M., Romanek J., Lipiński D., Opiela J. (2019). Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J., 90: 1127–1141.10.1111/asj.13260
  35. Sangalli J.R., Chiaratti M.R., De Bem T. H., de Araújo R.R., Bressan F.F., Sampaio R.V., Perecin F., Smith L.C., King W.A., Meirelles F.V. (2014). Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS One, 9 (6): e101022.10.1371/journal.pone.0101022
  36. Sepulveda-Rincon L.P., Solanas Edel L., Serrano-Revuelta E., Ruddick L., Maalouf W.E., Beaujean N. (2016). Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology, 86: 91–98.10.1016/j.theriogenology.2016.04.022
  37. Wan Y., Deng M., Zhang G., Ren C., Zhang H., Zhang Y., Wang L., Wang F. (2016). Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts. Cell Biol. Int., 40: 74–82.10.1002/cbin.10540
  38. Wang Y.S., Xiong X.R., An Z.X., Wang L.J., Liu J., Quan F.S., Hua S., Zhang Y. (2011). Production of cloned calves by combination treatment of both donor cells and early cloned embryos with 5-aza-2’-deoxycytidine and trichostatin A. Theriogenology, 75: 819–825.10.1016/j.theriogenology.2010.10.022
  39. Wang Y.M., Ding X.B., Liu X.F., Zhang Y. (2015). Donor cell trichostatin A treatment improves the in vitro development of cloned goat embryos. Small Ruminant Res., 124: 76–80.10.1016/j.smallrumres.2015.01.003
  40. Wen B.Q., Li J., Li J.J., Tian S.J., Sun S.C., Qi X., Cai W.T., Chang Q. L. (2014). The histone deacetylase inhibitor Scriptaid improves in vitro developmental competence of ovine somatic cell nuclear transferred embryos. Theriogenology, 81: 332–339.10.1016/j.theriogenology.2013.09.032
  41. Zhang Y.L., Zhang G.M., Jia R.X., Wan Y.J., Yang H., Sun L.W., Han L., Wang F. (2018). Non-invasive assessment of culture media from goat cloned embryos associated with subjective morphology by gas chromatography – mass spectroscopy-based metabolomic analysis. Anim. Sci. J., 89: 31–41.10.1111/asj.12885
  42. Zuo Y., Su G., Cheng L., Liu K., Feng Y., Wei Z., Bai C., Cao G., Li G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8: 65847–65859.10.18632/oncotarget.19504
DOI: https://doi.org/10.2478/aoas-2019-0063 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 97 - 108
Submitted on: May 15, 2019
|
Accepted on: Sep 12, 2019
|
Published on: Jan 28, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Maria Skrzyszowska, Marcin Samiec, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.