Have a personal or library account? Click to login
Functions of Circular RNAs Involved in Animal Skeletal Muscle Development – A Review Cover

Functions of Circular RNAs Involved in Animal Skeletal Muscle Development – A Review

Open Access
|Jan 2020

References

  1. Abdelmohsen K., Panda A.C., De S., Grammatikakis I., Kim J., Ding J., Noh J.H., Kim K.M., Mattison J.A., de Cabo R., Gorospe M. (2015). Circular RNAs in monkey muscle: age-dependent changes. Aging (Albany. NY), 7: 903–910.10.18632/aging.100834
  2. Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. (2014). CircRNA biogenesis competes with pre-mRNA splicing. Mol. Cell., 56: 55–66.10.1016/j.molcel.2014.08.019
  3. Bassel-Duby R., Olson E.N. (2006). Signaling pathways in skeletal muscle remodeling. Annu. Rev. Biochem.,75: 19–37.10.1146/annurev.biochem.75.103004.142622
  4. Chen L.L., Yang L. (2015). Regulation of circRNA biogenesis. RNA Biol., 12: 381–388.10.1080/15476286.2015.1020271
  5. Conway A. (2018). World poultry production at nearly 123 million tons in 2018. Poultry Trends, 6.
  6. Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 44: 2846–2858.10.1093/nar/gkw027
  7. Ivanov A., Memczak S., Wyler E., Torti F., Porath H.T., Orejuela M.R., Piechotta M., Levanon E.Y., Landthaler M., Dieterich C., Rajewsky N. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep., 10: 170–177.10.1016/j.celrep.2014.12.019
  8. Kulcheski F.R., Christoff A.P., Margis R. (2016). Circular RNAs are miRNA sponges and can be used as a new class of biomarker. J. Biotechnol., 238: 42–51.10.1016/j.jbiotec.2016.09.011
  9. Lasda E., Parker R. (2014). Circular RNAs: diversity of form and function. RNA, 20: 1829–1842.10.1261/rna.047126.114
  10. Legnini I., Di Timoteo G., Rossi F., Morlando M., Briganti F., Sthandier O., Fatica A., Santini T., Andronache A., Wade M., Laneve P., Rajewsky N., Bozzoni I. (2017). Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell., 66: 22–37.10.1016/j.molcel.2017.02.017
  11. Li C., Li X., Ma Q., Zhang X., Cao Y., Yao Y., You S., Wang D., Quan R., Hou X., Liu Z., Zhan Q., Liu L., Zhang M., Yu S., Ni W., Hu S. (2017). Genome-wide analysis of circular RNAs in prenatal and postnatal muscle of sheep. Oncotarget, 8: 97165–97177.10.18632/oncotarget.21835
  12. Li H., Wei X., Yang J., Dong D., Hao D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Lin F., Bai Y., Chen H. (2018 a). circFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of wnt3a. Mol. Ther. Nucleic Acids.,11: 272–283.10.1016/j.omtn.2018.02.012599288229858062
  13. Li H., Yang J., Wei X., Song C., Dong D., Huang Y., Lan X., Plath M., Lei C., Ma Y., Qi X., Bai Y., Chen H. (2018 b). CircFUT10 reduces proliferation and facilitates differentiation of myoblasts by sponging miR-133a. J. Cell. Physiol., 233: 4643–4651.10.1002/jcp.2623029044517
  14. Liang G., Yang Y., Niu G., Tang Z., Li K. (2017). Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages. DNA Res., 24: 523–535.10.1093/dnares/dsx022
  15. Memczak S., Jens M., Elefsinioti A., Torti F., Krueger J., Rybak A., Maier L., Mackowiak S.D., Gregersen L.H., Munschauer M., Loewer A., Ziebold U., Landthaler M., Kocks C., Le Noble F., Rajewsky N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495: 333–338.10.1038/nature11928
  16. Nie M., Deng Z.L., Liu J., Wang D.Z. (2015). Noncoding RNAs, emerging regulators of skeletal muscle development and diseases. Biomed Res. Int., 2015, 17.10.1155/2015/676575451683126258142
  17. Nitsche A., Doose G., Tafer H., Robinson M., Saha N.R., Gerdol M., Canapa A., Hoffmann S., Amemiya C.T., Stadler P.F. (2014). Atypical RNAs in the coelacanth transcriptome. J. Exp. Zool. Part B Mol. Dev. Evol., 322: 342–351.10.1002/jez.b.22542
  18. Ouyang H., Chen X., Wang Z., Yu J., Jia X., Li Z., Luo W., Abdalla B.A., Jebessa E., Nie Q., Zhang X. (2017). Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens. DNA Res., 25: 71–86.10.1093/dnares/dsx039
  19. Ouyang H., Chen X., Li W., Li Z., Nie Q., Zhang X. (2018). Circular RNA circSVIL promotes myoblast proliferation and differentiation by sponging miR-203 in chicken. Front. Genet., 9: 1–10.10.3389/fgene.2018.00172
  20. Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., Herzog M., Schreyer L., Papavasileiou P., Ivanov A., Öhman M., Refojo D., Kadener S., Rajewsky N. (2014). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 58: 870–885.10.1016/j.molcel.2015.03.027
  21. Salzman J., Chen R.E., Olsen M.N., Wang P.L., Brown P.O. (2013). Cell-type specific features of circular RNA expression. PLoS Genet., 9: 1003777.10.1371/journal.pgen.1003777
  22. Schiaffino S., Sandri M., Murgia M. (2007). Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology, 22: 269–278.10.1152/physiol.00009.2007
  23. Schiaffino S., Dyar K.A., Ciciliot S., Blaauw B., Sandri M. (2013). Mechanisms regulating skeletal muscle growth and atrophy. FEBS J., 280: 4294–4314.10.1111/febs.12253
  24. Shen Y., Guo X., Wang W. (2017). Identification and characterization of circular RNAs in zebrafish. FEBS letters, 591: 213–220.10.1002/1873-3468.12500
  25. Sun J., Xie M., Huang Z., Li H., Chen T., Sun R., Wang J., Xi Q., Wu T., Zhang Y. (2017). Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits. J. Anim. Sci., 95: 1092–1103.10.2527/jas2016.0867
  26. Venø M.T., Hansen T.B., Venø S.T., Clausen B.H., Grebing M., Finsen B., Holm I.E., Kjems J. (2015). Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol., 16: 245.10.1186/s13059-015-0801-3
  27. Vicens Q., Westhof E. (2014). Previews Biogenesis of Circular RNAs. Cell, 159: 13–14.10.1016/j.cell.2014.09.005
  28. Wei X., Li H., Yang J., Hao D., Dong D., Huang Y., Lan X., Plath M., Lei C., Lin F., Bai Y., Chen H. (2017). Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis., 8: e3153.10.1038/cddis.2017.541
  29. Westholm J.O., Miura P., Olson S., Shenker S., Joseph B., Sanfilippo P., Celniker S.E., Graveley B.R., Lai E.C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9: 1966–1981.10.1016/j.celrep.2014.10.062
DOI: https://doi.org/10.2478/aoas-2019-0053 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 3 - 10
Submitted on: May 6, 2019
|
Accepted on: Aug 6, 2019
|
Published on: Jan 28, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2020 Patricia Adu-Asiamah, Qiying Leng, Haidong Xu, Jiahui Zheng, Zhihui Zhao, Lilong An, Li Zhang, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.