Have a personal or library account? Click to login
The Utilization of Full-Fat Insect Meal in Rainbow Trout (Oncorhynchus mykiss) Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology Cover

The Utilization of Full-Fat Insect Meal in Rainbow Trout (Oncorhynchus mykiss) Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology

Open Access
|Jul 2019

References

  1. Aarnio K., Bonsdorff E., Rosenback N. (1996). Food and feeding habits of juvenile flounder Platichthys flesus (L.), and turbot Scophthalmus maximus L. in the Åland Archipelago, Northern Baltic Sea. J. Sea Res., 36: 311–320.10.1016/S1385-1101(96)90798-4
  2. Andersen N.M., Cheng L. (2004). The marine insect Halobates (Heteroptera: Gerridae): Biology, adaptations, distribution, and phylogeny. Oceangr. Mar. Biol., 42: 119–180.10.1201/9780203507810.ch5
  3. Association of Official Analytical Chemists (AOAC) (2007). Official Methods of Analysis, 18th edition. AOAC, Arlington, Virginia, USA.
  4. Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.10.1016/j.aquaculture.2013.12.024
  5. Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Lock E.J. (2018). Potentialofinsect-baseddietsfor Atlanticsalmon (Salmosalar). Aquaculture, 491: 72–81.10.1016/j.aquaculture.2018.03.016
  6. Bondari K., Sheppard D.C. (1981). Soldier fly larvae as feed in commercial fish production. Aquaculture, 24: 103–109.10.1016/0044-8486(81)90047-8
  7. Bruni L., Pastorelli R., Viti C., Gasco L., Parisi G. (2018). Characterisation of the intestinal microbial communities of rainbow trout (Oncorhynchus mykiss) fed with Hermetia illucens (black soldier fly) partially defatted larva meal as partial dietary protein source. Aquaculture, 487: 56–63.10.1016/j.aquaculture.2018.01.006
  8. Edgerton M.D. (2009). Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol., 149: 7–13.10.1104/pp.108.130195
  9. Egerton S., Culloty S., Whooley J., Stanton C., Ross R.P. (2018). The gut microbiota of marine fish. Front. Microbiol., 9: 1–17.10.3389/fmicb.2018.00873
  10. Elia A.C., Capucchio M.T., Caladroni B., Magara G., Jozef A., Dőrr M., Biasato E., Righeltti M., Pastorino P., Parearo M., Francesco G., Schiavone A., Gasco L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50–57.10.1016/j.aquaculture.2018.07.009
  11. Ferriz R.A., Baigún C.R.M., Dominino J. (2010). Distribution patterns and trophic characteristics of salmonids and native species inhabiting high altitude rivers of Pampa de Achala region, Argentina. Neotrop. Ichthyol., 8: 851–860.10.1590/S1679-62252010000400015
  12. Florczyk K., Mazurkiewicz J., Przybylska K., Ulikowski D., Szczepkowski M., Andrzejewski W., Golski J. (2014). Growth performance, feed intake and morphology of juvenile European catfish, Silurus glanis (L.) fed diets containing different protein and lipid levels. Aquac. Int., 22: 205–214.10.1007/s10499-013-9667-0
  13. Francis G., Makkar H.P., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199: 197–227.10.1016/S0044-8486(01)00526-9
  14. Frank D.N., Amand A.L.S., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R. (2007). Molecular–phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Nat. Acad. Sci., 104: 13780–13785.10.1073/pnas.0706625104
  15. Franks A.H., Harmsen H.J., Raangs G.C., Jansen G.J., Schut F., Welling G.W. (1998). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl. Env. Microbiol., 64: 3336–3345.10.1128/AEM.64.9.3336-3345.1998
  16. Fuller R. (1989). Probiotics in man and animals. J. Appl. Bact., 66: 365–378.10.1111/j.1365-2672.1989.tb05105.x
  17. Gasco L., Henry M., Piccolo G., Marono S., Gai F., Renna M., Luissiana C., Antonopoulou, E., Mola P., Chatzifotis S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Tech., 220: 34–45.10.1016/j.anifeedsci.2016.07.003
  18. Gasco L., Finke M., Huisvan A. (2018). Can diets containing insects promote animal health? J. Ins. Food Feed., 4: 1–4.10.3920/JIFF2018.x001
  19. Gerland P., Raftery A.E., Ševčíková H., Li N., Gu D., Spoorenberg T., Alkema L., Fosdick B., Chunn J., Laic N., Bay G., Buettner T., Heilig G., Wilmoth J. (2014). World population stabilization unlikely this century. Science, 346: 234–237.10.1126/science.1257469
  20. Green J.A., Hardy R.W. (2002). The optimum dietary essential amino acid pattern for rainbow trout (Oncorhynchus mykiss), to maximize nitrogen retention and minimize nitrogen excretion. Fish Physiol. Bioch., 27: 97–108.10.1023/B:FISH.0000021878.81647.6e
  21. Green T.J., Smullen R., Barnes A.C. (2013). Dietary soybean protein concentrate-induced intestinal disorder in marine farmed Atlantic salmon, Salmo salar is associated with alterations in gut microbiota. Vet. Microbiol., 166: 286–292.10.1016/j.vetmic.2013.05.009
  22. Halver J.E., Hardy R.W. (2002). (Eds). Fish Nutrition. San Diego, USA, Academic Press, 3rd ed., 824 pp.
  23. Harmsen H.J., Elfferich P., Schut F., Welling G.W. (1999). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb. Ecol. Health Dis., 11: 3–12.10.1080/089106099435862
  24. Heikkinen J., Vielma J., Kemiläinen O., Tiirola M., Eskelinen P., Kiuru T., Navia-Paldanius D., von Wright A. (2006). Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture, 261: 259–268.10.1016/j.aquaculture.2006.07.012
  25. Jabir M., Jabir S.A.R., Vikineswary S. (2012 a). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. Afr. J. Biotechnol., 11: 6592–6598.10.5897/AJB11.1084
  26. Jabir M., Razak S., Vikineswary S. (2012 b). Chemical composition and nutrient digestibility of super worm meal in red tilapia juvenile. Pak. Vet. J., 32: 489–493.
  27. Józefiak A., Engberg R.M. (2017). Insect proteins as a potential source of antimicrobial peptides in livestock production, J. Anim. Feed Sci., 26: 87–99.10.22358/jafs/69998/2017
  28. Józefiak A., Kierończyk B., Rawski M., Mazurkiewicz J., Benzertiha A., Gobbi P., Nogales-Mérida S., Świątkiewicz S., Józefiak D. (2018). Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota. J. Anim. Feed Sci. 27: 131–139.10.22358/jafs/91967/2018
  29. Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jensen B.B., Engberg R.M. (2011). Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Br. Poult. Sci., 52: 492–499.10.1080/00071668.2011.602963
  30. Józefiak D., Józefiak A., Kierończyk B., Rawski M. Świątkiewicz S., Długosz J., Engberg R.M. (2016). Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci., 16: 297–313.10.1515/aoas-2016-0010
  31. Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018 a). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183.10.1016/j.anifeedsci.2018.04.002
  32. Kierończyk B., Rawski M., Pawełczyk P., Różyńska J., Golusik J., Mikołajczak Z., Józefiak D. (2018 b). Do insects smell attractive to dogs? A comparison of dog reactions to insects and commercial feed aromas – a preliminary study. Ann. Anim. Sci., 18: 795–800.10.2478/aoas-2018-0012
  33. Kroeckel S., Harjes A-G., Roth I., Katz H., Wuertz S., Susenbeth A., Schulz C. (2012). When a turbot catches a fly: Evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – Growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture, 364: 345–352.10.1016/j.aquaculture.2012.08.041
  34. Kurakawa T., Ogata K., Matsuda K., Tsuji H., Kubota H., Takada T., Kado Y., Asahara T., Takahashi T., Nomoto K. (2015). Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PloS One, 10: 1–19.10.1371/journal.pone.0126226
  35. Lazzarotto V., Corraze G., Leprevost A., Quillet E., Dupont – Nivet M., Médale F. (2015). Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: consequences for reproduction, fatty acid composition and progeny survival. PloS One, 10: 1–17.10.1371/journal.pone.0117609
  36. Leary S., Underwood W., Anthony R., Cartner S., Corey D., Grandin T., Greenacre C., Gwaltney-Brant S., McCrackin M.A., Meyer R., Miller D., Shearer J., Yanong R. (2013). AVMA Guidelines for the euthanasia of animals. Illinois, USA: American Veterinary Medical Association, pp. 67–72.
  37. Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F., Wang W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep., 6: 1–12.10.1038/srep24340
  38. Lock E., Arsiwalla T., Waagbø R. (2015). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr., 22: 1202–1213.10.1111/anu.12343
  39. Magalhães R., Sánchez-López A., Silva Leal R., Martínez-Llorens S., Oliva-Teles A., Peres H. (2017). Black soldier fly (Hermetia illucens) pre-pupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476: 79–85.10.1016/j.aquaculture.2017.04.021
  40. Makkar H.P.S., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Tech., 197: 1–33.10.1016/j.anifeedsci.2014.07.008
  41. Mancuso T., Baldi L., Gasco L. (2016). An empirical study on consumer acceptance of farmed fish fed on insect meals: the Italian case. Aquacult. Int., 24: 1489–1507.10.1007/s10499-016-0007-z
  42. Manz W., Amann R., Ludwig W., Vancanneyt M., Schleifer K-H. (1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology, 142: 1097–106.10.1099/13500872-142-5-1097
  43. Mazurkiewicz J., Przybył A., Czyżak-Runowska G., Łyczyński A. (2011). Cold-pressed rapeseed cake as a component of the diet of common carp (Cyprinus carpio L.): effects on growth, nutrient utilization, body composition and meat quality. Aquac. Nutr. 17: 387–394.10.1111/j.1365-2095.2010.00811.x
  44. Merrifield D.L., Harper G.M., Dimitroglou A., Ringø E., Davies S.J. (2010). Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquacult. Res., 41: 1268–1272.10.1111/j.1365-2109.2009.02397.x
  45. Morales-Ramos M.G, Rojas G., Shapiro-Ilan D. (2014). (Eds). Mass production of beneficial organisms. Cambridge, USA, Academic Press – Elservier, 565–582 pp.
  46. Nayak S.K. (2010 a). Probiotics and immunity: a fish perspective. Fish Shellfish Immunol., 29: 2–14.10.1016/j.fsi.2010.02.01720219683
  47. Nayak S.K. (2010 b). Role of gastrointestinal microbiota in fish. Aquacult. Res., 41: 1553–1573.10.1111/j.1365-2109.2010.02546.x
  48. Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquacult., 10: 1–24.10.1111/raq.12281
  49. Ogino C. (1980). Requirements of carp and rainbow trout for essential amino acids. Bulletin of the Japanese Society for the Science of Fish, 46: 171–174.
  50. Ogunji J.O., Nimptsch J., Wiegand C., Schulz C. (2007). Evaluation of the influence of housefly maggot meal (magmeal) diets on catalase, glutathione S-transferase and glycogen concentration in the liver of Oreochromis niloticus fingerling. Comp. Biochem. A Mol. Integr Physiol., 147: 942–947.10.1016/j.cbpa.2007.02.028
  51. Orlov A.V., Gerasimov Y.V., Lapshin O.M. (2006). The feeding behavior of cultured and wild Atlantic salmon Salmo salar L., in the Louvenga river, Kola peninsula, Russia. ICES J. Mar. Sci., 63: 1297–1303.10.1016/j.icesjms.2006.05.004
  52. Ramos-Elorduy J., González E.A., Hernández A.R., Pino J.M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol., 95: 214–220.10.1603/0022-0493-95.1.214
  53. Rawski M., Kierończyk B., Długosz J., Świątkiewicz S., Józefiak D. (2016). Dietary probiotics affect gastrointestinal microbiota, histological structure and shell mineralization in turtles. PLoS One, 11: 1–12.10.1371/journal.pone.0147859
  54. Rawski M., Kierończyk B., Świątkiewicz S., Józefiak D. (2018). Long-term study on single and multiple species probiotic preparations for Florida softshell turtle (Apalone ferox) nutrition. Anim. Sci. Pap. Rep., 36: 87–98.
  55. Rikardsen A.H., Sandring S. (2006). Diet and size-selective feeding by escaped hatchery rainbow trout Oncorhynchus mykiss (Walbaum). ICES J. Mar. Sci., 63: 460–465.10.1016/j.icesjms.2005.07.014
  56. Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Ins. Food Feed, 1: 233–240.10.3920/JIFF2014.0006
  57. Sánchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F. (2014). Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod., 65: 16–27.10.1016/j.jclepro.2013.11.068
  58. Sánchez-Muros M.J., Haro C., Sanz A., Trenzado C., Villareces S., Barroso F. (2015). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr., 22: 943–955.10.1111/anu.12313
  59. Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Dore J. (2000). Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl. Env. Microbiol., 66: 2263–2266.10.1128/AEM.66.5.2263-2266.2000
  60. Subasinghe R., Soto D., Jia J. (2009). Global aquaculture and its role in sustainable development. Rev. Aquacult., 1: 2–9.10.1111/j.1753-5131.2008.01002.x
  61. Świątkiewicz S., Świątkiewicz M., Arczewska-Włosek A., Józefiak D. (2014). Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr., 99: 1–15.10.1111/jpn.12222
  62. Talwar C., Nagar S., Lal R., Negi R.K. (2018). Fish gut microbiome: current approaches and future perspectives. Indian J. Microbiol., 58: 397–414.10.1007/s12088-018-0760-y
  63. Tang X., Fatufe A.A., Yin Y., Tang Z., Wang S., Liu Z., Li X., Li T. (2012). Dietary supplementation with recombinant lactoferrampin-lactoferricin improves growth performance and affects serum parameters in piglets. J. Anim. Vet. Adv., 11: 2548–2555.10.3923/javaa.2012.2548.2555
  64. Tang Z., Yin Y., Zhang Y., Huang R., Sun Z., Li T., Chu W., Kong X., Li L., Geng M., Tu Q. (2009). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Brit. J. Nutr., 101: 998–1005.10.1017/S0007114508055633
  65. Topic Popovic N., Strunjak-Perovic I., Coz-Rakovac R., Barisic J., Jadan M., Persin Berakovic A., Sauerborn Klobucar R. (2012). Tricaine methane-sulfonate (MS-222) application in fish anaesthesia. J. Appl. Ichthyol., 28: 553–564.10.1111/j.1439-0426.2012.01950.x
  66. Vargas A., Randazzo B., Riolo P., Truzzi C., Gioacchini G., Giorgini E., Loreto N., Ruschioni S., Zarantoniello M., Antonucci M., Polverini S., Cardinaletti G., Sabbatni S., Tulli F., Olivotto I. (2018). Rearing zebrafish on black soldier fly (Hermetia illucens): biometric, histological, spectroscopic, biochemical, and molecular implications. Zebrafish, 15: 404–419.10.1089/zeb.2017.1559
  67. Vargas-Abundez J.A., Randazzo B., Foddai M., Sanchini L., Truzzi C., Giorgini E., Gasco L., Olivotto I. (2019). Insect meal based diets for clownfish: biometric, histological, spectroscopic, biochemical and molecular implications. Aquaculture, 498: 1–11.10.1016/j.aquaculture.2018.08.018
  68. Wang A.R., Ran C., Ringø E., Zhou Z.G. (2018). Progress in fish gastrointestinal microbiota research. Rev. Aquacult., 10: 626–640.10.1111/raq.12191
  69. Webster C.D., Lim C. (2002). (Eds). Nutrient requirements and feeding of finfish for aquaculture. Oxon, United Kingdom, CABI Publishing, pp. 184–201.10.1079/9780851995199.0000
  70. Wong S., Waldrop T., Summerfelt S., Davidson J., Barrows F., Kenney P.B., Welch T., Weins G.D., Snekvik K., Rawls J.F., Good C. (2013). Aquacultured rainbow trout (Oncorhynchus mykiss) possess a large core intestinal microbiota that is resistant to variation in diet and rearing density. Appl. Environ. Microbiol., 79: 4974–4984.10.1128/AEM.00924-13
  71. Wu S., Zhang F., Huang Z., Liu H., Xie C., Zhang J., Thacker P.A., Qiao S. (2012). Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides, 35: 225–230.10.1016/j.peptides.2012.03.030
  72. Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Ying Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biot., 6: 1–6.10.1186/s40104-015-0018-z
  73. Ye L., Amberg J., Chapman D., Gaikowski M., Liu W.T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. Mult. J. Microbial Ecol. (ISME), 8: 541–551.10.1038/ismej.2013.181
  74. Yoon J., Ingale S., Kim J., Kim K., Lee S., Park Y., Lee S.C., Kwon I.K., Chae B.J. (2012). Effects of dietary supplementation of antimicrobial peptide-A3 on growth performance, nutrient digestibility, intestinal and fecal microflora and intestinal morphology in weanling pigs. Anim. Feed Sci. Tech., 177: 98–107.10.1016/j.anifeedsci.2012.06.009
  75. Yoon J., Ingale S., Kim J., Kim K., Lee S., Park Y., Lee S.C., Kwon I.K., Chae B.J. (2014). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Liv. Sci., 159: 53–60.10.1016/j.livsci.2013.10.025
  76. Yoon J.H., Ingale S.L., Kim J.S., Kim K.H., Lohakare J., Park Y.C., Kwon I.K., Chae B.J. (2013). Effects of dietary supplementation with antimicrobial peptide-P5 on growth performance, apparent total tract digestibility, faecal and intestinal microflora and intestinal morphology of weanling pigs. J. Sci. Food Agri., 93: 587–592.10.1002/jsfa.5840
  77. Zarantoniello M., Bruni L., Randazzo B., Vargas A., Giocachini G., Truzzi C., Annibaldi A., Riolo P., Parisi G., Cardinaletti G., Trulli F., Olivoto I. (2018). Partial dietary inclusion of Hermetia illucens (black soldier fly) full fat prepupae in zebrafish feed: biometric, histological, biochemical and molecular implications. Zebrafish, 5: 519–532.10.1089/zeb.2018.1596
DOI: https://doi.org/10.2478/aoas-2019-0020 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 747 - 765
Submitted on: Aug 14, 2018
|
Accepted on: Mar 1, 2019
|
Published on: Jul 30, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2019 Agata Józefiak, Silvia Nogales-Mérida, Zuzanna Mikołajczak, Mateusz Rawski, Bartosz Kierończyk, Jan Mazurkiewicz, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.