Have a personal or library account? Click to login
The Physiological and Productivity Effects of Heat Stress in Cattle – A Review Cover

The Physiological and Productivity Effects of Heat Stress in Cattle – A Review

Open Access
|Jul 2019

References

  1. Adamczyk K., Pokorska J., Makulska J., Earley B., Mazurek M. (2013). Genetic analysis and evaluation of behavioural traits in cattle. Livestock Sci., 154: 1–12.10.1016/j.livsci.2013.01.016
  2. Agrawal V., Jaiswal M.K., Jaiswal Y.K. (2013). Lipopolysaccharide-induced modulation in the expression of progesterone receptor and estradiol receptor leads to early pregnancy loss in mouse. Zygote, 21: 337–344.10.1017/S0967199412000330
  3. Akbarian A., Michiels J., Degroote J., Majdeddin M., Golian A., De Smet S. (2016). Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol., 7: 37.10.1186/s40104-016-0097-5
  4. Altan O., Pabuccuoglu A., Alton A., Konyalioglu S., Bayraktar H. (2003). Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers. Br. Poultry Sci., 4: 545–550.10.1080/00071660310001618334
  5. Ammer S., Lambertz C., Gauly M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. J. Dairy. Res., 83: 165–172.10.1017/S0022029916000182
  6. Angrecka S., Herbut P. (2016). Impact of barn orientation on insolation and temperature of stalls surface. Ann. Anim. Sci., 16: 887–896.10.1515/aoas-2015-0096
  7. Bailey T., Sheets J., McClary D., Smith S., Bridges A. (2016). Heat Abatement. Elanco.
  8. Battaglia D.F., Krasa H.B., Padmanabhan V., Viguie C., Karsch F.J. (2000). Endocrine alterations that underlie endotoxin-induced disruption of the follicular phase in ewes. Biol. Reprod., 62: 45–53.10.1095/biolreprod62.1.45
  9. Baumgard L.H., Rhoads RP. (2012). Ruminant production and metabolic responses to heat stress. J. Anim. Sci., 90: 1855–1865.10.2527/jas.2011-4675
  10. Baumgard L.H., Wheelock J.B., Sanders S.R., Moore C.E., Green H.B., Waldron M.R., Rhoads R.P. (2011). Post absorptive carbohydrate adaptations to heat stress and monensin supplementation in lactating Holstein cows. J. Dairy Sci., 94: 5620–5633.10.3168/jds.2011-4462
  11. Baumgard L.H., Rhoads R.P., Rhoads M., Gabler N., Ross J., Keating A., Boddicker R., Lenka S., Sejian V. (2012). Impact of climate change on livestock production. In: Environmental stress and amelioration in livestock production, Sejian V., Nagvi S., Ezeji T., Lakritz J., Lal R. (eds). New York, NY: Springer Publ., pp. 413–468.10.1007/978-3-642-29205-7_15
  12. Baumgard L.H., Keating A., Ross J.W., Rhoads R.P. (2015). Effects of heat stress on the immune system, metabolism and nutrient partitioning: implications on reproductive success. Rev. Bras. Reprod. Anim., 39: 173–183.
  13. Bellagi R., Martin B., Chassaing C., Najar T., Pomies D. (2017). Evaluation of heat stress on Tarentaise and Holstein cow performance in the Mediterranean climate. Int. J. Biometeorol., 61: 1371–1379.10.1007/s00484-017-1314-4
  14. Berman A. (2005). Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci., 83: 1377–1384.10.2527/2005.8361377x
  15. Berman A., Folman Y., Kaim M., Mamen M., Herz Z., Wolfenson D., Arieli A., Graber Y. (1985). Upper critical temperatures and forced ventilation effects for high yielding dairy cows in a sub-tropical climate. J. Dairy Sci., 68: 1488–1495.10.3168/jds.S0022-0302(85)80987-5
  16. Bernabucci U., Lacetera N., Ronchi B., Nardone A. (2002). Effects of the hot season on milk protein fractions in Holstein cows. Anim. Res., 51: 25–33.10.1051/animres:2002006
  17. Bernabucci U., Biffani S., Buggiotti L., Vitali A., Lacetera N., Nardone A. (2014). The effects of heat stress in Italian Holstein dairy cattle. J. Dairy. Sci., 97: 471–486.10.3168/jds.2013-6611
  18. Boddicker R.L., Seibert J.T., Johnson J.S., Pearce S.C., Selsby J.T., Gabler N.K., Lucy M.C., Safranski T.J., Rhoads R.P., Baumgard L.H., Ross J.W. (2014). Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs. PloS One, 9: e110859.10.1371/journal.pone.0110859
  19. Bouraoui R., Lahmar M., Majdoub A., Djemali M., Belyea R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res., 51: 479–491.10.1051/animres:2002036
  20. Bromfield J.J., Sheldon I.M. (2013). Lipopolysaccharide reduces the primordial follicle pool in the bovine ovarian cortex ex vivo and in the murine ovary in vivo. Biol. Reprod., 88: 1–9.10.1095/biolreprod.112.106914
  21. Broucek J., Novak P., Vokralova J., Soch M., Kisac P., Uhrincat M. (2009). Effect of high temperature on milk production of cows from free-stall housing with natural ventilation. Slovak J. Anim. Sci., 42: 167–173.
  22. Bun C., Watanabe Y., Uenoyama Y., Inoue N., Ieda N., Matsuda F., Tsukamura H., Kuwahara M., Maeda K.I., Ohkura S., Pheng V. (2018). Evaluation of heat stress response in crossbred dairy cows under tropical climate by analysis of heart rate variability. J. Vet. Med. Sci., 80: 181–185.10.1292/jvms.17-0368
  23. Cardot V., Le Roux Y., Jurjanz S. (2008). Drinking behavior of lactating dairy cows and prediction of their water intake. J. Dairy Sci., 91: 2257–2264.10.3168/jds.2007-0204
  24. Chaiyabutr N., Chanpongsang S., Suadsong S. (2008). Effects of evaporative cooling on the regulation of body water and milk production in crossbred Holstein cattle in a tropical environment. Int. J. Biometerol., 52: 575–585.10.1007/s00484-008-0151-x
  25. Collier R.J., Dahl G.E., Van Baale M.J. (2006). Major advances associated with environmental effects on dairy cattle. J. Dairy Sci., 89: 1244–1253.10.3168/jds.S0022-0302(06)72193-2
  26. Collier R.J., Gebremedhin K., Macko A.R., Roy K.S. (2012). Genes involved in the thermal tolerance of livestock. In: Environmental stress and amelioration in livestock production, Sejian V., Naqvi S.M.K., Ezeji T., Lakritz J., Lal R. (eds). Springer-Verlag (publisher), Berlin Heidelberg, Germany, pp. 379–410.10.1007/978-3-642-29205-7_14
  27. Dalcin V.C., Fischer V., Daltro D.D., Alfonzo E.P., Stumpf M.T., Kolling G.J., Silva M.V., McManus C. (2016). Physiological parameters for thermal stress in dairy cattle. R. Bras. Zootec., 45: 458–465.10.1590/S1806-92902016000800006
  28. Da Silva R.G., Guilhermino M.M., Morais D.A.E.F. (2010). Thermal radiation absorbed by dairy cows in pasture. Int. J. Biometeorol., 54: 5–11.10.1007/s00484-009-0244-1
  29. Davis S., Mader T. (2003). Adjustments for wind speed and solar radiation to the temperature-humidity index. Nebr. Beef. Cattle Rep., 224: 48–51.
  30. Deaton C.H.M., Marlin D.J. (2003). Exercise-associated oxidative stress. Clin. Tech. Equine Prac., 2: 278–291.10.1053/S1534-7516(03)00070-2
  31. Dotan Y., Lichtenberg D., Pinchuk I. (2004). Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog. Lipid Res., 43: 200–227.10.1016/j.plipres.2003.10.001
  32. Eigenberg R.A., Brown-Brandl T.M., Nienaber J.A., Hahn G.L. (2005). Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, Part 2: Predictive Relationships. Biosyst. Eng., 91: 111–118.10.1016/j.biosystemseng.2005.02.001
  33. Gaworski M., Rocha A.G.F. (2016). Effect of management practices on time spent by cows in waiting area before milking. In: Engineering for Rural Development, Malinovska L., Osadcuks V. (eds). Latvia Univ. Agriculture, Latvia, pp. 1300–1304.
  34. Godyń D., Herbut E., Walczak J. (2013). Infrared thermography as a method for evaluating the welfare of animals subjected to invasive procedures – a review. Ann. Anim. Sci., 13: 423–434.10.2478/aoas-2013-0027
  35. González Pereyra A.V., Maldonado May V., Catracchia C.G., Herrero M.A., Flores M.C., Mazzini M. (2010). Influence of water temperature and heat stress on drinking water intake in dairy cows. Chil. J. Agric. Res., 70: 328–336.10.4067/S0718-58392010000200017
  36. Hammami H., Bormann J., M’ Hamdi N., Montaldo H.H., Gengler N. (2013). Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci., 96: 1844–1855.10.3168/jds.2012-5947
  37. Harmon R.J., Lu M., Trammel D.S., Smith B.A. (1997). Influence of heat stress and calving on antioxidant activity in bovine blood. J. Dairy Sci., 80: 264.
  38. Hempel S., König M., Menz C., Janke D., Amon B., Banhazi T.M., Estellés F., Amon T. (2018). Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability. Biosyst. Eng., 166: 58–75.10.1016/j.biosystemseng.2017.11.004
  39. Herbut P. (2013). Temperature, humidity and air movement variations inside a free stall barn during heavy frost. Ann. Anim. Sci., 3: 587–596.10.2478/aoas-2013-0025
  40. Herbut P., Angrecka S., Nawalany G. (2013). Influence of wind on air movement in a free stall barn during the summer period. Ann. Anim. Sci., 13: 109–119.10.2478/v10220-012-0063-x
  41. Herbut P., Angrecka S. Godyń D. (2018 a). Effect of the duration of high air temperature on cow’s milking performance in moderate climate conditions. Ann. Anim. Sci., 18: 195–207.10.1515/aoas-2017-0017
  42. Herbut P., Angrecka S., Walczak J. (2018 b). Environmental parameters to assessing of heat stress in dairy cattle – a review. Int. J. Biometerol., 62: 2089–2097.10.1007/s00484-018-1629-9624485630368680
  43. Hill D.L., Wall E. (2015). Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal, 9: 138–149.10.1017/S1751731114002456
  44. Hoffmann G., Schmidt M., Ammon C., Rose-Meierhöfer S., Burfeind O., Heuwieser W., Berg W. (2013). Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Vet. Res. Commun., 37: 91–99.10.1007/s11259-012-9549-3
  45. Hue N.T., Tran H.T., Phan T., Nakamura J., Iwata T., Harano K., Ishibashi Y., Yuasa T., Iwaya-Inoue M. (2013). Hsp90 and reactive oxygen species regulate thermotolerance of rice seedlings via induction of heat shock factor A2 (OsHSFA2) and galactinol synthase 1 (Os-GolS1). Agric. Sci., 4: 154–164.10.4236/as.2013.43023
  46. Johnson J.M., Proppe D.W. (1996). Cardiovascular adjustments to heat stress. In: Handbook of physiology: Environmental physiology, Fregly M.J., Blatteis C.M. (eds). Oxford University Press, New York, USA, pp. 215–243.10.1002/cphy.cp040111
  47. Johnson J., Abuajamieh M., Sanz M.V., Seibert J., Kvidera S., Ross J., Selsby J., Gabler N., Xin H., Lucy C.M., Safranski T.J., Rhoads R., Baumgard L. (2013). Heat stress alters energy metabolism during pre- and postnatal development. Proc. Mexicali Heat Stress Symposium. Doi: 10.13140/2.1.3792.0961.
  48. Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. (2002). Heat stress in lactating dairy cows: a review. Livest. Prod. Sci., 77: 59–91.10.1016/S0301-6226(01)00330-X
  49. Kovács L., Kézér F.L., Ruff F., Jurkovich V., Szenci O. (2018). Assessment of heat stress in 7-week old dairy calves with non-invasive physiological parameters in different thermal environments. Plos One, 13: e0200622.10.1371/journal.pone.0200622
  50. Lambertz C., Sanker C., Gauly M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. J. Dairy. Sci., 97: 319–329.10.3168/jds.2013-7217
  51. Lavon Y., Leitner G., Moallem U., Klipper E., Voet H., Jacoby S., Glick G., Meidan R., Wolfenson D. (2011). Immediate and carryover effects of Gram-negative and Gram-positive toxin-induced mastitis on follicular function in dairy cows. Theriogenology, 76: 942–953.10.1016/j.theriogenology.2011.05.001
  52. Lee D.H.R. (1965). Climatic stress indices for domestic animals. Int. J. Biometeorol., 9: 29–35.10.1007/BF02187306
  53. Lees A.M., Lees J.C., Lisle A.T., Sullivan M.L., Gaughan J.B. (2018). Effect of heat stress on rumen temperature of three breeds of cattle. Int. J. Biometeorol., 62: 207–215.10.1007/s00484-017-1442-x
  54. Lemerle C., Goddard M.E. (1986). Assessment of heat stress in dairy cattle in Papua New Guinea. Trop. Anim. Health Prod., 18: 232–242.10.1007/BF02359540
  55. Lendelova J., Botto L., Pogran S., Reichstadterova T. (2012). Effect of different cooling system on lying time of dairy cows in cubicles with separated manure solids bedding. J. Cent. Europ. Agric., 13: 717–728.10.5513/JCEA01/13.4.1118
  56. Mauger G., Bauman Y., Nennich T., Salathé E. (2015). Impacts of climate change on milk production in the United States. Prof. Geogr., 67: 121–131.10.1080/00330124.2014.921017
  57. Min L., Cheng J., Shi B., Yang H., Zheng N., Wang J. (2015). Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows. J. Zhejiang Univ. Sci., B, 16: 541–548.10.1631/jzus.B1400341
  58. Morimoto R.I., Tissieres A., Georgopoulos C. (1990). Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA, pp. 323–359.
  59. National Research Council (1981). Subcommittee on Environmental Stress. Effect of Environment on Nutrient Requirements of Domestic Animals. Washington (DC), USA, National Academies Press, ISBN-10: 0-309-03181-8, 168 pp.
  60. Noordhuizen J., Bonnefoy J.M. (2015). Heat stress in dairy cattle: major effects and practical management measures for prevention and control. SOJ Vet. Sci., 1: 1–7. Doi: http://dx.doi.org/10.15226/2381-2907/1/1/00103.10.15226/2381-2907/1/1/00103
  61. Padilla L., Matsui T., Kamiya Y., Kamiya M., Tanaka M., Yano H. (2006). Heat stress decreases plasma vitamin C concentration in lactating cows. Livest Sci., 101: 300–304.10.1016/j.livprodsci.2005.12.002
  62. Pearce S.C., Mani V., Boddicker R.L., Rhoads R.P., Weber T.E., Ross J.W., Baumgard L.H., Gabler N.K. (2013). Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. Plos One, 8: e70215.10.1371/journal.pone.0070215
  63. Pilatti J., Vieira F. (2017). Environment, behavior and welfare aspects of dairy cows reared in compost bedded pack barns system. J. Anim. Behav. Biometeorol., 5: 97–105.10.31893/2318-1265jabb.v5n3p97-105
  64. Pilatti J., Vieira F., Rankrape F., Vismara E. (2018). Diurnal behaviors and herd characteristics of dairy cows housed in a compost-bedded pack barn system under hot and humid conditions. Animal, 13: 399–406.10.1017/S1751731118001088
  65. Pragna P., Archana P.R., Aleena J., Sejian V., Krishnan G., Bagath M., Manimaran A., Beena V., Kurien E.K., Varma G., Bhatta R. (2017). Heat stress and dairy cow: impact on both milk yield and composition. Int. J. Dairy Sci., 12: 1–11.10.3923/ijds.2017.1.11
  66. Purwanto B.P., Abo Y., Sakamoto R., Furumoto F., Yamamoto S. (1990). Diurnal patterns of heat production and heart rate under thermoneutral conditions in Holstein Friesian cows differing in milk production. J. Agric. Sci., 114: 139–142.10.1017/S0021859600072117
  67. Rhoads M.L., Rhoads R.P., Van Baale J., Collier R.J., Sanders S.R., Weber W.J., Crooker B.A., Baumgard L.H. (2009). Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci., 92: 1986–1997.10.3168/jds.2008-1641
  68. Rhoads R.P., Baumgard L., Saugee J.K. (2013). Metabolic priorities during heat stress with an emphasis on skeletal muscle. J. Anim. Sci., 91: 2492–2503.10.2527/jas.2012-6120
  69. Risco C.A., Benzaquen M. (2011). Monitoring health and looking for sick cows. In: Dairy production medicine, Risco C.A., Melendez P. (eds). Blackwell Publishing Ltd., Oxford, Great Britain, pp. 27–32.10.1002/9780470960554.ch4
  70. Schutz K.E., Cox N.R., Matthews L.R. (2008). How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation. Appl. Anim. Behav. Sci., 114: 307–318.10.1016/j.applanim.2008.04.001
  71. Schutz K.E, Rogers A.R., Cox N.R., Tucker C.B. (2009). Dairy cows prefer shade that offers greater protection against solar radiation in summer: Shade use, behaviour, and body temperature. Appl. Anim. Behav. Sci., 116: 28–34.10.1016/j.applanim.2008.07.005
  72. Slimen B.I., Taha N., Abdeljelil G., Manef A. (2016). Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr., 100: 401–412.10.1111/jpn.12379
  73. Smith D.L., Smith T., Rude B.J., Ward S.H. (2013). Short communication: Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci., 96: 3028–3033.10.3168/jds.2012-5737
  74. St-Pierre N.R., Cobanov B., Schnitkey G. (2003). Economic losses from heat stress by US livestock industries. J. Dairy. Sci., 86 (E. Suppl.): 52–77.10.3168/jds.S0022-0302(03)74040-5
  75. Stevens D.C. (1981). A model of respiratory vapor loss in Holstein dairy cattle. Trans ASAE, 24: 151–153.10.13031/2013.34215
  76. Taylor N.A., Tipton M.J., Kenny G.P. (2014). Considerations for the measurement of core, skin and mean body temperatures. J. Therm. Biol., 46: 72–101.10.1016/j.jtherbio.2014.10.006
  77. Tucker C.B., Rogers A.R., Schutz K.E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. App. Anim. Behav. Sci., 109: 141–154.10.1016/j.applanim.2007.03.015
  78. Turk R., Podpečan O., Mrkun J., Flegar-Meštrić Z., Perkov S., Zrimšek P. (2015). The effect of seasonal thermal stress on lipid mobilisation, antioxidant status and reproductive performance in dairy cows. Reprod. Domest. Anim., 50: 595–603.10.1111/rda.12534
  79. Unruh E.M., Theurer M.E., White B.J., Larson R.L., Drouillard J.S., Schrag N. (2017). Evaluation of infrared thermography as a diagnostic tool to predict heat stress events in feedlot cattle. Am. J. Vet. Res., 78: 771–777.10.2460/ajvr.78.7.771
  80. Van Laer E., Palmyre C., Moons H., Sonck B., André F., Tuyttens M. (2014). Importance of outdoor shelter for cattle in temperate climates. Livest. Sci., 159: 87–101.10.1016/j.livsci.2013.11.003
  81. Wang X., Bjerg B.S., Choi Ch., Zong Ch., Zhang G. (2018). A review and quantitative assessment of cattle-related thermal indices. J. Therm. Biol., 77: 24–37.10.1016/j.jtherbio.2018.08.005
  82. Werner J., Mekjavic I.B., Taylor N.A.S. (2008). Concepts in physiological regulation: a thermoregulatory perspective. In: Physiological bases of human performance during work and exercise, Taylor N.A.S., Groeller H. (eds). Churchill Livingstone, London, United Kingdom, pp. 325–340.
  83. West J.W. (2003). Effects of heat-stress on production in dairy cattle. J. Dairy. Sci., 86: 2131–2144.10.3168/jds.S0022-0302(03)73803-X
  84. West J.W., Mullinix B.G., Bernard J.K. (2003). Effects of hot, humid weather on milk temperature, dry matter intake and milk yield of lactating dairy cows. J. Dairy Sci., 86: 232–242.10.3168/jds.S0022-0302(03)73602-9
  85. Westwood C.T., Lean I.J., Garvin J.K. (2002). Factors influencing fertility of Holstein dairy cows: a multivariate description. J. Dairy Sci., 85: 3225–3237.10.3168/jds.S0022-0302(02)74411-1
  86. Wheelock J.B., Rhoads R.P., Vanbaale M.J., Sanders S.R., Baumgard L.H. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci., 93: 644–655.10.3168/jds.2009-2295
  87. Wilson T.E., Crandall C.G. (2011). Effect of thermal stress on cardiac function. Exerc. Sport Sci. Rev., 39: 12–17.10.1097/JES.0b013e318201eed6
  88. Yazgan K., Cedden F., Daştanbek C. (2013). Effects of air temperature and humidity on average daily gain in feedlot cattle of different genotypes. Arch. Tierz., 56: 28–41.10.7482/0003-9438-56-004
DOI: https://doi.org/10.2478/aoas-2019-0011 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 579 - 593
Submitted on: Jul 31, 2018
Accepted on: Feb 7, 2019
Published on: Jul 30, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Piotr Herbut, Sabina Angrecka, Dorota Godyń, Gundula Hoffmann, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.