Have a personal or library account? Click to login
Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos Cover

Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos

Open Access
|Feb 2019

References

  1. Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim., 53: 986–996.10.1111/rda.13198
  2. Boya P., González-Polo R.A., Casares N., Perfettini J.L., Dessen P., Larochet-te N., Métivier D., Meley D., Souquere S., Yoshimori T., Pierron G., Codo-gno P., Kroemer G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol., 25: 1025–1040.10.1128/MCB.25.3.1025-1040.2005
  3. Brill A., Torchinsky A., Carp H., Toder V. (1999). The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet., 16: 512–519.10.1023/A:1020541019347
  4. Brink M.F., Bishop M.D., Pieper F.R. (2000). Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology, 53: 139–148.10.1016/S0093-691X(99)00247-2
  5. Brophy B., Smolenski G., Wheeler T., Wells D., L’ Huillier P., Laible G. (2003). Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat. Biotechnol., 21: 157–162.10.1038/nbt783
  6. Callesen M.M., Árnadóttir S.S., Lyskjaer I., Ørntoft M.W., Høyer S., Dagnaes-Hansen F., Liu Y., Li R., Callesen H., Rasmussen M.H., Berthelsen M.F., Thomsen M.K., Schweiger P.J., Jensen K.B., Laurberg S., Ørntoft T.F., Elver-løv-Jakobsen J.E., Andersen C.L. (2017). A genetically inducible porcine model of intestinal cancer. Mol. Oncol., 11: 1616–1629.10.1002/1878-0261.12136
  7. Campbell K.H., Mc Whir J., Ritchie W.A., Wilmut I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64–66.10.1038/380064a0
  8. Chi D., Zeng Y., Xu M., Si L., Qu X., Liu H., Li J. (2017). LC3-dependent autophagy in pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell. Reprogram., 19: 354–362.10.1089/cell.2017.0016
  9. Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Poncede León F.A., Robl J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256–1258.10.1126/science.280.5367.1256
  10. Denning C., Dickinson P., Burl S., Wylie D., Fletcher J., Clark A.J. (2001). Gene targeting in primary fetal fibroblasts from sheep and pig. Clon. Stem Cells, 3: 221–231.10.1089/15362300152725945
  11. Deryugina E.I., Quigley J.P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 25: 9–34.10.1007/s10555-006-7886-9
  12. Fabian D., Koppel J., Maddox-Hyttel P. (2005). Apoptotic processes during mammalian preimplantation development. Theriogenology, 64: 221–231.10.1016/j.theriogenology.2004.11.022
  13. Feng X., Cao S., Wang H., Meng C., Li J., Jiang J., Qian Y., Su L., He Q., Zhang Q. (2015). Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res., 24: 73–85.10.1007/s11248-014-9818-8
  14. Galluzzi L., Maiuri M.C., Vitale I., Zischka H., Castedo M., Zitvogel L., Kro-emer G. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death Differ., 14: 1237–1243.10.1038/sj.cdd.4402148
  15. Galoian K., Temple H.T., Galoyan A. (2012). mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol., 33: 885–890.10.1007/s13277-011-0315-x
  16. Gómez M.C., Pope C.E. (2015). Cloning endangered felids by interspecies somatic cell nuclear transfer. Methods Mol. Biol., 1330: 133–152.10.1007/978-1-4939-2848-4_13
  17. Himaki T., Yokomine T.A., Sato M., Takao S., Miyoshi K., Yoshida M. (2011). Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Anim Sci. J., 81: 558–563.10.1111/j.1740-0929.2010.00772.x
  18. Iguma L.T., Lisauskas S.F., Melo E.O., Franco M.M., Pivato I., Vianna G.R., Sou-sa R.V., Dode M.A., Aragão F.J., Rech E.L., Rumpf R. (2005). Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet. Mol. Res., 4: 55–66.
  19. Ji Q., Zhu K., Liu Z., Song Z., Huang Y., Zhao H., Chen Y., He Z., Mo D., Cong P. (2013). Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis. Theriogenology, 79: 815–823.10.1016/j.theriogenology.2012.12.010
  20. Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (1997). Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br. J. Haematol., 98: 673–685.10.1046/j.1365-2141.1997.2623081.x
  21. Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 15: 81–94.10.1038/nrm3735
  22. Jin L., Guo Q., Zhu H.Y., Xing X.X., Zhang G.L., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2017). Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos. Mol. Reprod. Dev., 84: 340–346.10.1002/mrd.22787
  23. Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.10.1089/cell.2018.0001
  24. Kasinathan P., Knott J.G., Moreira P.N., Burnside A.S., Jerry D.J., Robl J.M. (2001). Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol. Reprod., 64: 1487–1493.10.1095/biolreprod64.5.1487
  25. Keefer C.L. (2008). Lessons learned from nuclear transfer (cloning). Theriogenology, 69: 48–54.10.1016/j.theriogenology.2007.08.033
  26. Keefer C.L. (2015). Artificial cloning of domestic animals. Proc. Natl. Acad. Sci. USA, 112: 8874–8878.10.1073/pnas.1501718112
  27. Kim G.A., Lee E.M., Jin J.X., Lee S., Taweechaipaisankul A., Hwang J.I., Alam Z., Ahn C., Lee B.C. (2017). Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res., 26: 435–445.10.1007/s11248-017-0021-6
  28. Kim S.H., Zhao M.H., Liang S., Cui X.S., Kim N.H. (2015). Inhibition of cathepsin B activity reduces apoptosis by preventing cytochrome c release from mitochondria in porcine parthenotes. J. Reprod. Dev., 61: 261–268.10.1262/jrd.2015-019
  29. Knight Z.A., Shokat K.M. (2007). Chemically targeting the PI3K family. Biochem. Soc. Trans., 35: 245–249.10.1042/BST0350245
  30. Kolber-Simonds D., Lai L., Watt S.R., Denaro M., Arn S. (2004). Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl. Acad. Sci. USA, 101: 7335–7340.10.1073/pnas.0307819101
  31. Kwon D.J., Kim D.H., Hwang I.S., Kim D.E., Kim H.J., Kim J.S., Lee K., Im G.S., Lee J.W., Hwang S. (2017). Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res., 26: 153–163.10.1007/s11248-016-9979-8
  32. Lee H.R., Gupta M.K., Kim D.H., Hwang J.H., Kwon B., Lee H.T. (2016). Poly(ADP-ribosyl)ation is involved in pro-survival autophagy in porcine blastocysts. Mol. Reprod. Dev., 83: 37–49.10.1002/mrd.22588
  33. Lee P.S., Tsang S.W., Moses M.A., Trayes-Gibson Z., Hsiao L.L., Jensen R., Squil-lace R., Kwiatkowski D.J. (2010). Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am. J. Respir. Cell Mol. Biol., 42: 227–234.10.1165/rcmb.2009-0050OC
  34. Lee S., Jin J.X., Khoirinaya C., Kim G.A., Lee B.C. (2015). Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology, 61: 261–268.
  35. Lee S.C., Lee H., Oh K.B., Hwang I.S., Yang H., Park M.R., Ock S.A., Woo J.S., Im G.S., Hwang S. (2017). Production and breeding of transgenic cloned pigs expressing human CD73. Dev. Reprod., 21: 157–165.10.12717/DR.2017.21.2.157
  36. Lee S.E., Hwang K.C., Sun S.C., Xu Y.N., Kim N.H. (2011). Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev., 78: 498–509.10.1002/mrd.21331
  37. Lee S.H., Xu Y.N., Heo Y.T., Cui X.S., Kim N.H. (2013). Effects of trichostatin A and 5-aza-2’deoxycytidine on nuclear reprogramming in pig cloned embryos. Reprod. Dev. Biol., 37: 269–279.10.12749/RDB.2013.37.4.269
  38. Li Z., He X., Chen L., Shi J., Zhou R., Xu W., L iu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470.10.1089/cell.2013.0010
  39. Lin T., Lee J.E., Oqani R.K., Kim S.Y., Cho E.S., Jeong Y.D., Baek J.J., Jin D.I. (2016). Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition. Reprod. Biol., 16: 269–278.10.1016/j.repbio.2016.10.003
  40. Luo Y., Wang Y., Liu J., Lan H., Shao M., Yu Y., Quan F., Zhang Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res., 24: 875–883.10.1007/s11248-015-9898-0
  41. Malemud C.J. (2006). Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci., 11: 1696–1701.10.2741/1915
  42. Mastromonaco G.F., Perrault S.D., Betts D.H., King W.A. (2003). Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev. Biol., 6: 41.10.1186/1471-213X-6-41
  43. Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. (2012). The pig: a model for human infectious diseases. Trends Microbiol., 30: 50–57.10.1016/j.tim.2011.11.002
  44. Miyamoto K., Hoshino Y., Minami N., Yamada M., Imai H. (2007). Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. J. Reprod. Dev., 53: 237–246.10.1262/jrd.18085
  45. Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta, 1833: 3448–3459.10.1016/j.bbamcr.2013.06.001
  46. Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22.10.2147/SCCAA.S151763
  47. Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.10.1016/j.theriogenology.2017.04.022
  48. Page-Mc Caw A., Ewald A.J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 8: 221–233.10.1038/nrm2125
  49. Pan T., Rawal P., Wu Y., Xie W., Jankovic J., Le W. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 164: 541–551.10.1016/j.neuroscience.2009.08.014
  50. Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.10.22358/jafs/67408/2004
  51. Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393–422.10.22358/jafs/67034/2005
  52. Samiec M., Skrzyszowska M. (2010 a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.
  53. Samiec M., Skrzyszowska M. (2010 b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci., 10: 399–411.
  54. Samiec M., Skrzyszowska M. (2011 a). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.10.2478/v10181-011-0050-721721422
  55. Samiec M., Skrzyszowska M. (2011 b). The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci., 14: 329–340.10.2478/v10181-011-0051-621721423
  56. Samiec M., Skrzyszowska M. (2012 a). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.
  57. Samiec M., Skrzyszowska M. (2012 b). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78: 1855–1867.10.1016/j.theriogenology.2012.06.02922979963
  58. Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.10.2478/aoas-2013-0035
  59. Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14: 128–139.10.1016/j.repbio.2013.12.006
  60. Samiec M., Skrzyszowska M. (2018 a). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.10.24425/119040
  61. Samiec M., Skrzyszowska M. (2018 b). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.10.2478/aoas-2018-0015
  62. Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15: 509–516.10.2478/v10181-012-0078-3
  63. Samiec M., Skrzyszowska M., Opiela J. (2013 a). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.10.2478/aoas-2013-0009
  64. Samiec M., Skrzyszowska M., Bochenek M. (2013 b). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.10.2478/aoas-2013-0049
  65. Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed. Res. Int., 2015: 814686.10.1155/2015/814686
  66. Sandrin V., Boson B., Salmon P., Gay W., Nègre D., Le Grand R., Trono D., Cos-set F.L. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood, 100: 823–832.10.1182/blood-2001-11-0042
  67. Schwartz L.M., Smith S.W., Jones M.E., Osborne B.A. (1993). Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad Sci. USA, 90: 980–984.10.1073/pnas.90.3.980
  68. Shen X., Zhang N., Wang Z., Bai G., Zheng Z., Gu Y., Wu Y., Liu H., Zhou D., Lei L. (2015). Induction of autophagy improves embryo viability in cloned mouse embryos. Sci. Rep., 5: 17829.10.1038/srep17829
  69. Skrzyszowska M., Smorąg Z., Słomski R., Kątska-Książkiewicz L., Kalak R., Michalak E., Wielgus K., Lehmann J., Lipiński D., Szalata M., Pławski A., Samiec M., Jura J., Gajda B., Ryńska B., Pieńkowski M. (2006). Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod., 74: 1114–1120.10.1095/biolreprod.104.039370
  70. Song B.S., Kim J.S., Yoon S.B., Lee K.S., Koo D.B., Lee D.S., Choo Y.K., Huh J.W., Lee S.R., Kim S.U., Kim S.H., Kim H.M., Chang K.T. (2001). Inactivated Sendai-virusmediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis. Reprod. Fert. Develop., 23: 826–836.10.1071/RD10194
  71. Song B.S., Yoon S.B., Kim J.S., Sim B.W., Kim Y.H., Cha J.J., Choi S.A., Min H.K., Lee Y., Huh J.W., Lee S.R., Kim S.H., Koo D.B., Choo Y.K., Kim H.M., Kim S.U., Chang K.T. (2012). Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol. Reprod., 87: 1–11.10.1095/biolreprod.111.097949
  72. Staunstrup N.H., Stenderup K., Mortensen S., Primo M.N., Rosada C., Steini-che T., Liu Y., Li R., Schmidt M., Purup S., Dagnæs-Hansen F., Schrøder L.D., Svensson L., Petersen T.K., Callesen H., Bolund L., Mikkelsen J.G. (2017). Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis. Model. Mech., 10: 869–880.10.1242/dmm.028662
  73. Tanabe Y., Kuwayama H., Wakayama S., Nagatomo H., Ooga M., Kamimura S., Kishigami S., Wakayama T. (2017). Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction, 154: 859–866.10.1530/REP-17-0372
  74. Tanida I., Ueno T., Kominami E. (2004). LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 36: 2503–2518.10.1016/j.biocel.2004.05.009
  75. Tsukada M., Ohsumi Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett., 333: 169–174.10.1016/0014-5793(93)80398-E
  76. Tsukamoto S. (2014). Autophagic activity as an indicator for selecting good quality embryos. Reprod. Med. Biol., 14: 57–64.10.1007/s12522-014-0197-x
  77. Tsukamoto S., Yamamoto A. (2013). The role of autophagy in early mammalian embryonic development. J. Mamm. Ova. Res., 30: 86–94.10.1274/jmor.30.86
  78. Vajta G. (2007). Handmade cloning: the future way of nuclear transfer? Trends Biotechnol., 25: 250–253.10.1016/j.tibtech.2007.04.004
  79. Verma G., Arora J.S., Sethi R.S., Mukhopadhyay C.S., Verma R. (2015). Handmade cloning: recent advances, potential and pitfalls. J. Anim. Sci. Biotechnol., 6: 43.10.1186/s40104-015-0043-y
  80. Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369–374.10.1038/28615
  81. Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55–65.10.1089/cell.2017.0023
  82. Wang M., Gao Y., Qu P., Qing S., Qiao F., Zhang Y., Mager J., Wang Y. (2017). Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 7: 13403.10.1038/s41598-017-13899-8
  83. Wani N.A., Vettical B.S., Hong S.B. (2017). First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One, 12 (5): e0177800.10.1371/journal.pone.0177800
  84. Wilmut I., Schnieke A.E., Mc Whir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.10.1038/385810a0
  85. Wongsrikeao P., Nagai T., Agung B., Taniguchi M., Kunishi M., Suto S., Otoi T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Reprod. Dev., 74: 694–702.10.1002/mrd.20640
  86. Xu Y.N., Shen X.H., Lee S.E., Kwon J.S., Kim D.J., Heo Y.T., Cui X.S., Kim N.H. (2012). Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J. Reprod. Dev., 58: 576–584.10.1262/jrd.2012-005
  87. Yu M., Qiu Z.L., Li H., Zeng W.S., Chen L.N., Li Q.H., Quan S. (2011). Association between cell apoptosis and the quality of early mouse embryos. Nan Fang Yi Ke Da Xue Xue Bao, 31: 409–413.
  88. Yue Z., Jin S., Yang C., Levine A.J., Heintz N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA., 100: 15077–15082.10.1073/pnas.2436255100
  89. Zakhartchenko V., Mueller S., Alberio R., Schernthaner W., Stojkovic M., We-nigerkind H., Wanke R., Lassnig C., Mueller M., Wolf E., Brem G. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev., 60: 362–369.10.1002/mrd.1098
  90. Zhang L., Huang Y., Wu Y., Si J., Huang Y., Jiang Q., Lan G., Guo Y., Jiang H. (2017). Scriptaid upregulates expression of development-related genes, inhibits apoptosis, and improves the development of somatic cell nuclear transfer mini-pig embryos. Cell. Reprogram., 19: 19–26.10.1089/cell.2016.0033
  91. Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. (2013). Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One, 8 (2): e55941.10.1371/journal.pone.0055941
  92. Zhang Y., Qu P., Ma X., Qiao F., Ma Y., Qing S., Zhang Y., Wang Y., Cui W. (2018). Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One, 13 (5): e0196785.10.1371/journal.pone.0196785
DOI: https://doi.org/10.2478/aoas-2018-0046 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 127 - 146
Submitted on: Jun 14, 2018
Accepted on: Oct 1, 2018
Published on: Feb 1, 2019
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Ju-Young Lee, Sang Hwan Kim, Jong Taek Yoon, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.