Have a personal or library account? Click to login
The Relationship Between Subclinical Ketosis and Ruminal Dysfunction in Dairy Cows Cover

The Relationship Between Subclinical Ketosis and Ruminal Dysfunction in Dairy Cows

Open Access
|Nov 2018

References

  1. Abdela N. (2016). Sub-acute ruminal acidosis (SARA) and its consequences in dairy cattle: A review of past and recent research at global prospective. Achievements in the Life Science, 10: 187–196.10.1016/j.als.2016.11.006
  2. Abdelli A., Raboisson D., Kaidi R., Ibrahim B., Kalem A., Iguer-Ouada M. (2017). Elevated non-esterified fatty acid and β-hydroxybutyrate in transition dairy cows and their association with reproductive performance and disorders: A meta-analysis. Theriogenology, 93: 99–104.10.1016/j.theriogenology.2017.01.030
  3. Bach K.D., Heuwieser W., Mc Art J.A.A. (2016). Technical note: Comparison of 4 electronic handheld meters for diagnosing hyperketonemia in dairy cows. J. Dairy Sci., 99: 9136–9142.10.3168/jds.2016-11077
  4. Bobe G., Young J.W., Beitz D.C. (2004). Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci., 87: 3105–3124.10.3168/jds.S0022-0302(04)73446-3
  5. Chapinal N., Carson M.E., Le Blanc S.J., Leslie K.E., Godden S., Capel M., Santos J.E.P., Overton M.W., Duffield T.F. (2012). The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J. Dairy Sci., 95: 1301–1309.10.3168/jds.2011-4724
  6. Danfaer A., Tetens V., Agergaard N. (1995). Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants. Comp. Biochem. Physiol., 111B: 201–210.10.1016/0305-0491(94)00242-M
  7. Doreau M., Ollier A., Machlet-Doreau B. (2001). An atypical case of ruminal fermentations leading to ketosis in early lactating cows. Rev. Med. Vet., 152: 301–306.
  8. Duffield T., Lissemore K., Mc Bride B., Leslie K. (2009). Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci., 92: 571–580.10.3168/jds.2008-1507
  9. Enemark J.M.D. (2008). The monitoring, prevention and treatment of subacute ruminal acidosis (SARA): a review. Vet. J., 176: 32–43.10.1016/j.tvjl.2007.12.021
  10. Enemark J.M.D., Jorgensen R.J. (2001). Subclinical rumen acidosis as a cause of reduced appetite in newly calved cows in Denmark: Results of a poll among Danish dairy practitioners. Vet. Quarterly, 23: 206–210.10.1080/01652176.2001.9695115
  11. Goff J.P. (2008). The monitoring, prevention, and treatment of milk fever and subclinical hypocalcemia in dairy cows. Vet. J., 176: 50–57.10.1016/j.tvjl.2007.12.020
  12. González F.D., Muiño R., Pereira V., Campos R., Benedito J.L. (2010). Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. J. Vet. Sci., 12: 251–255.10.4142/jvs.2011.12.3.251
  13. Hofírek B., Haas D. (2001). Comparative studies of ruminal fluid collected by oral tube or by puncture of the caudoventral ruminal sac. Acta Vet. Brno, 70: 27–33.10.2754/avb200170010027
  14. Hofirek B., Dvořák R., Němeček L., Doležel R., Pospíši l Z., et al. (2009). Cattle diseases (in Czech). ČBS, Noviko a.s. (CZ), 1149 pp.
  15. Ingvartsen K.L. (2006). Feeding- and management-related diseases in the transition cow. Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed Sci. Tech., 126: 175–213.10.1016/j.anifeedsci.2005.08.003
  16. Kimura K., Reinhardt T.A., Goff J.P. (2006). Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle. J. Dairy Sci., 89: 2588–2595.10.3168/jds.S0022-0302(06)72335-9
  17. Kleen J.L., Cannizzo C. (2012). Incidence, prevalence and impact of SARA in dairy herds. Anim. Feed Sci. Tech., 172: 4–8.10.1016/j.anifeedsci.2011.12.003
  18. Lean I.J., Bruss M.L., Baldwin R.L., Troutt H.F. (1992). Bovine ketosis: a review. II. Biochemistry and prevention. Vet. Bull., 62: 1–14.
  19. Li P., Li X.B., Fu S.X., Wu C.C., Wang X.X., Yu G.J., Long M., Wang Z., Liu G.W. (2012). Alterations of fatty acid β-oxidation capability in the liver of ketotic cows. J. Dairy Sci., 95: 1759–1766.10.3168/jds.2011-4580
  20. Mc Art J.A.A., Nydam D.V., Oetzel G.R., Overton T.R., Ospina P.A. (2013). Elevated non-esterified fatty acids and β-hydroxybutyrate and their association with transition dairy cow performance. Vet. J., 198: 560–570.10.1016/j.tvjl.2013.08.011
  21. Mc Carthy M.M., Mann S., Nydam D.V., Overton T.R., Mc Art J.A.A. (2015). Short communication: Concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during transition period. J. Dairy Sci., 98: 6284–6290.10.3168/jds.2015-9446
  22. Owens F.N., Secrist D.S., Hill W.J., Gill D.R. (1998). Acidosis in cattle: A review. J. Anim. Sci., 76: 275–286.10.2527/1998.761275x
  23. Pechová A., Illek J., Pavlata L. (2002). Einwirkungen der Lebersteatose auf den Stoffwechsel bei Milchkühen. Wien. Tierärztl. Mschr., 89: 325–332.
  24. Plaizier J.C., Krause D.O., Gozho G.N., Mc Bride B.W. (2008). Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet. J., 176: 21–31.10.1016/j.tvjl.2007.12.016
  25. Raboisson D., Mounié M., Maigné E. (2014). Diseases, reproductive performance, and changes in milk production associated with subclinical ketosis in dairy cows: A meta-analysis and review. J. Dairy Sci., 97: 7547–7563.10.3168/jds.2014-8237
  26. Reinhardt T.A., Lippolis J.D., Mc Cluskey B.J., Goff J.P., Horst R.L. (2011). Prevalence of subclinical hypocalcaemia in dairy herds. Vet. J., 188: 122–124.10.1016/j.tvjl.2010.03.025
  27. Ruoff J., Bertulat S., Burfeind O., Heuwieser W. (2016). Associations of β-hydroxybutyrate, cholesterol, triglycerides and high-density lipoproteins to non-esterified fatty acids pre- and postpartum. J. Dairy Res., 83: 447–452.10.1017/S0022029916000534
  28. Stefanska B., Nowak W., Komisarek J., Taciak M., Barszcz M., Skomial J. (2017). Prevalence and consequence of subacute ruminal acidosis in Polish dairy herds. J. Anim. Physiol. Anim. Nutr., 101: 694–702.10.1111/jpn.12592
  29. Tothova C., Nagy O., Kovac G. (2014). Relationship between some variables of protein profile and indicators of lipomobilization in dairy cows after calving. Archiv Tierzucht., 57: 1–9.10.7482/0003-9438-57-019
  30. Weng X., Zhao W., Neethirajan S., Duffield T. (2015). Microfluidic biosensor for β Hydroxybutyrate (βHBA) determination of subclinical ketosis diagnosis. J. Nanobiotechnol., 13, http://dx.doi.org/10.1186/s12951-015-0076-610.1186/s12951-015-0076-6433457525880676
  31. Zhang Z., Liu G., Li X., Gao L., Guo Ch., Wang H., Wang Z. (2010). Evaluation of the change of serum copper and zinc concentrations of dairy cows with subclinical ketosis. Biol. Trace Elem. Res., 138: 8–12.10.1007/s12011-009-8606-4
DOI: https://doi.org/10.2478/aoas-2018-0038 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 955 - 971
Submitted on: Jan 9, 2018
Accepted on: Jul 27, 2018
Published on: Nov 2, 2018
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Alena Pechová, Andrea Nečasová, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.