Have a personal or library account? Click to login
Silver and Zinc Nanoparticles in Animal Nutrition – A Review Cover

Silver and Zinc Nanoparticles in Animal Nutrition – A Review

Open Access
|Nov 2018

References

  1. Adams L.K., Lyon D.Y., Alvarez P.J.J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res., 40: 3527–3532.10.1016/j.watres.2006.08.004
  2. Ahmadi J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Ap. Sci. J., 7: 24–27.
  3. Ahmadi F., Branch S. (2012). Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J., 32: 325–328.
  4. Ahmadi F., Khah M.M., Javid S., Zarneshan A., Akradi L., Salehifar P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. Inter. J. Biosci, 3: 95–100.10.12692/ijb/3.5.95-100
  5. Al-Yasiry A.R.M., Kiczorowska B., Samolińska W. (2017). The nutritional value and content of mineral elements in meat of broiler chicken feed diets supplemented with Boswellia serrata. J. Elem., 22: 1027–1037.10.5601/jelem.2017.22.1.1294
  6. Antonelli M., De Pascale G., Ranieri V.M., Pelaia P., Tufano R., Piazza O., Zangrillo A., Ferrario A., De Gaetano A., Guaglianone E., Donelli G. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTiveR) vs conventional catheters in intensive care unit patients. J. Hosp. Infect., 82: 101–107.10.1016/j.jhin.2012.07.010
  7. Arabi F., Imandar M., Negahdary M., Imandar M., Noughabi M. T., Akbari-dastjerdi H., Fazilati M. (2012). Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res., 7: 3679–3685.
  8. Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. (2007). Effect of silver on burn wound infection control and healing: review of the literature. Burns, 33: 139–148.10.1016/j.burns.2006.06.010
  9. Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. (2009). To wards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4: 634–641.10.1038/nnano.2009.242
  10. Boudreau M.D., Imam M.S., Paredes A.M., Bryant M.S., Cunningham C.K., Felton R.P., Jones M.Y., Davis K.J., Olson G.R. (2016). Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol. Sci., 150: 131–160.10.1093/toxsci/kfv318
  11. Buzea C., Pacheco I.I., Robbie K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2: MR17–MR71.10.1116/1.2815690
  12. Chen H., Zhao R., Wang B., Cai C., Zheng L., Wang H., Wang M., Ouyang H., Zou X., Chai Z., Zhao Y., Feng W. (2017). The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 8: 80–88.10.1016/j.impact.2017.07.005
  13. Chen Y., Chen H., Shi J. (2013). In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 23: 3144–3176.10.1002/adma.201205292
  14. Chmielowiec-Korzeniowska A., Tymczyna L., Dobrowolska M., Banach M., Nowakowicz-Dębek B., Bryl M., Drabik A., Tymczyna-Sobotka M., Kolejko M. (2015). Silver (Ag) in tissues and eggshells, biochemical parameters and oxidative stress in chickens. Open Chem., 13: 1269–1274.10.1515/chem-2015-0140
  15. Choi O., Hu Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Envir. Sci. Tech., 42: 4583–4588.10.1021/es703238h
  16. Choi O., Deng K.K., Kim N.J., Ross L.Jr., Surampalli R.Y., Hu Z. (2008). The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Res., 42: 3066–3074.10.1016/j.watres.2008.02.021
  17. Chook S.W., Chia C.H., Zakaria S., Ayob M.K., Chee K.L., Huang N.M., Neoh H.M., Lim H.N., Jamal R., Fadhil R.M., Rahman R.A. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res. Lett., 7: 541.10.1186/1556-276X-7-541
  18. Cui L., Chen P., Chen S., Yuan Z., Yu C., Ren B., Zhang K. (2013). In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal. Chem., 85: 5436–5443.10.1021/ac400245j
  19. Curtis A., Wilkinson C. (2001). Nanotechniques and approaches in biotechnology. Mater. Today, 4: 22–28.10.1016/S1369-7021(01)80035-3
  20. Dhas S.P., Shiny P.J., Khan S., Mukherjee A., Chandrasekaran N. (2014). Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol., 54: 916–927.10.1002/jobm.201200316
  21. Diarra M.S., Silversides F.G., Diarrassouba F. (2007). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microbiol., 73: 6566–6576.10.1128/AEM.01086-07
  22. Dos Santos C.A., Seckler M.M., Ingle A.P., Gupta I., Galdiero S., Galdiero M., Gade A., Rai M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 103: 1931–1944.10.1002/jps.24001
  23. Elkloub K., Moustafa M.E., Ghazalah A.A., Rehan A.A.A. (2015). Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci., 14: 177–182.10.3923/ijps.2015.177.182
  24. EU Recommendation (2011). Recommendation on the definition of a nanomaterial, 696. EU.
  25. Felehgari K., Ahmadi F., Rokhzadi A., Kurdestany A.H., Khah M.M. (2013). The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bull. Env. Pharmacol. Life Sci., 2: 104–108.
  26. Ferket P. (2011). Strategies for finding alternatives to growth promoters. Available from: http://en.engormix.com/MA-poultry-industry/management/articles/strategies-finding-alternatives-growth-t1771/124-p0.htm. Accessed August 1, 2012.
  27. Fondevila M. (2010). Potential use of silver nanoparticles as an additive in animal feeding, silver nanoparticles, Perez D.P. (ed.), InTech, DOI: 10.5772/8509. Available from: http://www.intecho-pen.com/books/silver-nanoparticles/potential-use-of-silver-nanoparticles-as-an-additive-in-animal-feeding10.5772/8509.Availablefrom:http://www.intecho-pen.com/books/silver-nanoparticles/---silver-nanoparticles-----animal-feeding
  28. Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Tech., 150: 259–269.10.1016/j.anifeedsci.2008.09.003
  29. Gallocchio F., Biancotto G., Cibin V., Losasso C., Belluco S., Peters R., van Bemmel G., Cascio C., Weigel S., Tromp P., Gobbo F., Catania S., Ricci A. (2017). Transfer study of silver nanoparticles in poultry production. J. Agric. Food Chem., 65: 3767–3774.10.1021/acs.jafc.7b00670
  30. Grela E.R., Kiczorowska B., Samolińska W., Kiczorowski P., Rybiński W., Hanczakowska E. (2017). Chemical composition of chosen leguminous. Part I. Basic nutrients, amino acids, antinutritional factors and antioxidant activity. European Food Res. Tech., 243: 1385–1395.10.1007/s00217-017-2849-7
  31. Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., Filser J., Hensten A., Kneuer K., Maillard J-V., Norppa H., Scheringer M., Wijnh oven S. (2015). Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 18: 122–123.10.1016/j.mattod.2015.02.014
  32. Hassanabadi A., Hajati H., Bahreini L. (2012). The effects of nano-silver on performance, carcass characteristics, immune system and intestinal microflora of broiler chickens. Proc. 3rd International Veterinary Poultry Congress.
  33. Hendrickson O.D., Klochkov S.G., Novikova O.V., Bravova I.M., Shevtsova E.F., Safenkova I.V., Zherdev A.V., Bachurin S.O., Dzantiev B.B. (2016). Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects. Toxicol. Lett., 241: 184–192.10.1016/j.toxlet.2015.11.018
  34. Houtkooper R.H., Argmann C., Houten S.M., Cantó C., Jeninga E.H., Andreux P.A., Thomas C., Doenlen R., Schoonjans K., Auwerx J. (2011). The metabolic footprint of aging in mice. Sci. Rep., 1: 134.10.1038/srep00134
  35. Hwang M.G., Katayama H., Ohgaki S. (2007). Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res., 41: 4097–4104.10.1016/j.watres.2007.05.052
  36. Kędziora A., Gerasymchuk Y., Sroka E., Bugała-Płoskońska G., Doroszkiewicz W., Rybak Z., Hreniak D., Wiglusz R., Stręk W. (2013). Use of the materials based on partially reduced graphene-oxide with silver nanoparticle as bacteriostatic and bactericidal agen (in Polish). Polim. Med., 43: 129–134.
  37. Kiczorowska B., Samolińska W., Grela E.R, Andrejk o D. (2015 a). Effect of infrared-irradiated pea seeds in mixtures for broilers on the health status and selected performance indicators of the birds (in Polish). Med. Wet., 71: 583–588.
  38. Kiczorowska B., Samolińska W., Kwiecień M., Winiarska-Mieczan A., Rusinek-Prystupa E., Al-Yasiry A.R.M. (2015 b). Nutritive value and contents of minerals in eggs produced in large-scale, courtyard and organic systems. J. Elem., 20: 887–898.10.5601/jelem.2014.19.4.701
  39. Kiczorowska B., Samolińska W., Andrejk o D. (2016 a). Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat. Anim. Sci. J., 87: 1396–1406.10.1111/asj.12592
  40. Kiczorowska B., Samolińska W., Al-Yasiry A.R.M. Kowalczyk-Pecka D. (2016 b). Effect of supplementation of mixtures for broiler chickens with Boswellia serrata on the condition of the gastrointestinal tract and rearing efficiency. Ann. Anim. Sci., 16: 835–849.10.1515/aoas-2016-0007
  41. Kiczorowska B., Samolińska W., Al-Yasiry A.R.M, Kiczorowski P., Winiarska-Mieczan A. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci., 17: 1–21.10.1515/aoas-2016-0076
  42. Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., Kwon I.H., Jeong J., Han B.S., Yu I.J. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicol., 20: 575–583.10.1080/08958370701874663
  43. Kumar S. (2010). Nanotechnology and animal health. Vet. World, 3: 567–569.10.5455/vetworld.2010.567-569
  44. Lara H.H., Ayala-Nunez N.V., Turrent L.C.I., Padilla C.R. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biot., 26: 615–621.10.1007/s11274-009-0211-3
  45. Li M.Z., Huang J.T., Tsai Y.H., Mao S.Y., Fu C.M., Lien T.F. (2016). Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J., 87: 1379–1385.10.1111/asj.12579
  46. Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24: 135–141.10.1007/s10534-010-9381-6
  47. Lin W., Xu Y., Huang C., Ma Y., Shannon K.B., Chen D., Huang Y.W. (2009). Toxicity of nano-and microsized ZnO particles in human lung epithelial cells. J. Nanopart. Res., 11: 25–39.10.1007/s11051-008-9419-7
  48. Lipińska I. (2015). Innovation risks in production of food – legal and economic aspects (in Polish). Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu. Rocz. Nauk., 17: 129–134.
  49. Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. App. Microbiol., 107: 1193–1201.10.1111/j.1365-2672.2009.04303.x
  50. Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Kwong-Hang Tam P., Chiu J.F., Che C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12: 527–534.10.1007/s00775-007-0208-z
  51. Martinez-Castanon G.A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J.R., Ruiz F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res., 10: 1343–1348.10.1007/s11051-008-9428-6
  52. Milani N.C., Sbardella M., Ikeda N.Y., Arno A., Mascarenhas B.C., Miyada V.S. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Tech., 227: 13–23.10.1016/j.anifeedsci.2017.03.001
  53. Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Brit. Poultry Sci., 56: 486–493.10.1080/00071668.2015.1064093
  54. Najafzadeh H., Ghoreishi S.M., Mohammadian B., Rahimi E., Afzalzadeh M.R., Kazemivarnamkhasti M., Ganjealidaran H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Vet. World, 6: 534–537.10.5455/vetworld.2013.534-537
  55. Nirmala R., Sheikh F.A., Kanjwal M.A., Lee J.H., Park S.-J., Navamathavan R., Kim H.Y. (2010). Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J. Nanoparticle Res., 13: 1917–1927.10.1007/s11051-010-9944-z
  56. Nistico R., Rosellini A., Rivolo P., Faga M.G., Lamberti R., Martorana S., Castellino M., Virga A., Mandracci P., Malandrino M., Magnacca G. (2015). Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles. Appl. Surf. Sci., 328: 287–295.10.1016/j.apsusc.2014.12.050
  57. Ognik K., Sembratowicz I., Cholewińska E., Wlazło Ł., Nowakowicz-Dębek B., Szlązak R., Tutaj K. (2016). The effect of chemically-synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Ann. Anim. Sci., 16: 439–450.10.1515/aoas-2015-0067
  58. Padmavathy N., Vijayaraghavan R. (2008). Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater., 9: 1–7.10.1088/1468-6996/9/3/035004
  59. Park E.-J., Bae E., Yi J., Kim Y., Choi K., Lee S.H., Yoon J., Lee B.C., Park K. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Sci. Technol., 30: 162–168.10.1016/j.etap.2010.05.004
  60. Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sa-wosz F., Chwalibog A. (2012). Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol., 4: 1–8.10.2147/OAAP.S35100
  61. Rai M., Yadav A., Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27: 76–83.10.1016/j.biotechadv.2008.09.002
  62. Rajendran D., Kumar G., Ramakrishnan S., Thomas K.S. (2013). Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Res. J. Biotechnol., 8: 11–17.
  63. Rajendran R., Balakumar C., Hasabo A.M.A., Jayakumar S., Vaideki K., Ra-jesh E.M. (2010). Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol., 2: 202–208.10.4314/ijest.v2i1.59113
  64. Sabella S., Carney R.P., Brunetti V., Malvindi M.A., Al-Juffali N., Vecchio G., Janes S.M., Bakr O.M., Cingolani R., Stellacci F., Pompa P.P. (2014). A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 6: 7052–7061.10.1039/c4nr01234h
  65. Sawosz E., Binek M., Grodzik M., Zielińska M., Sysa P., Szmidt M., Niemiec T., Chwalibog A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Tierernahr., 6: 444–451.10.1080/17450390701664314
  66. Sawosz E., Grodzik M., Zielinska M., Niemiec T., Olszanska B., Chwalibog A. (2009). Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Eur. Poult. Sci., 73: 208–213.
  67. Sawosz E., Grodzik M., Lisowski P., Zwierzchowski L., Niemiec T., Zieliń-ska M., Szmidt M., Chwalibog A. (2010). Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bull. Vet. Inst. Pulawy, 54: 81–85.
  68. Seil J.T., Webster T.J. (2012). Antibacterial effect of zinc oxide nanoparticles combined with ultra-sound. Nanotech., 23: 495101.10.1088/0957-4484/23/49/495101
  69. Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech, 18: 225103.10.1088/0957-4484/18/22/225103
  70. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7: 219–242.10.1007/s40820-015-0040-x
  71. Skalska J., Frontczak-Baniewicz M., Strużyńska L. (2015). Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology, 46: 145–154.10.1016/j.neuro.2014.11.002
  72. Smekalova M., Aragon V., Panacek A., Prucek R., Zboril R., Kvitek L. (2016). Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J., 209: 174–179.10.1016/j.tvjl.2015.10.032
  73. Smith J., Sones K., Grace D., Mac Millan S., Tarawali S., Herrero M. (2013). Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front., 3: 6–13.10.2527/af.2013-0002
  74. Soltani M., Ghodratnema M., Ahari A., Ebrahimzadeh Mousavi H.A., Atee M., Dastmalchi F., Rahmanya J., (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. Int. J. Vet. Res., 3: 137–142.
  75. Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K.L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B.A., Kosaraju K., Tarannum M., Craw-ford S., Yi P., Liu X., Babu S.V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J. (2015). Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environ. Sci. Nano., 2: 227–244.10.1039/C5EN00046G
  76. Świderska-Środa A., Łojkowski W., Lewandowska M., Kurzydłowski K. (2016). The nanoparticles world (in Polish). Wyd. Nauk. PWN, Warszawa.
  77. Taglietti A., Diaz Fernandez Y.A., Amato E., Cucca L., Dacarro G., Grisoli P., Necchi V., Pallavicini P., Pasotti L., Patrini M. (2012). Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir, 28: 8140–8148.10.1021/la3003838
  78. Uniyal S., Garg A.K., Jadhav S.E., Chaturvedi V.K., Mohanta R.K. (2017). Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest. Sci., 204: 59–64.10.1016/j.livsci.2017.08.009
  79. Varner K.E., El-Badawy A., Feldhake D., Venkatapathy R. (2010). State-Of-The-Science Review: Everything Nano Silver and More. Washington, DC, US Environmental Protection Agency.
  80. Wadhera A., Fung M. (2005). Systemic argyria associated with ingestion of colloidal silver. Dermatology Online Journal 11, 12, http://dermatology.cdlib.org/11110.5070/D30832G6D3
  81. Wang B., Feng W., Wang M., Wang T., Gu Y., Zhu M., Ouyang H., Shi J., Zhang F., Zhao Y., Chai Z., Wang H., Wang J. (2008). Acute toxicological impact of nano- and submiro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10: 263–276.10.1007/s11051-007-9245-3
  82. Wawrzynowicz J., Wajszczuk K., Baum R. (2012). The specificity of risk factors in agricultural enterprises – an attempt at a holistic approach (in Polish). Zarządzanie i Finanse, 10: 349–360.
  83. Wijnhoven S.W.P., Peijnenburg W.J.G.M., Peijnenburg W.J., Herberts C.A., Ha-gens W.I., Oomen A.G., Heugens E.H., Roszek B., Bisschops J., Gosens I., Van De Meent D., Dekkers S., De Jong W.H., van Zijverden M., Sips A.J.A.M., Geertsma R. (2009). Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109–138.10.1080/17435390902725914
  84. Wilding L.A., Bassis C.M., Walacavage K., Hashway S., Leroueil P.R., Morishita M., Maynard A.D., Philbert M.A., Bergin I.L. (2016). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 10: 513–520.10.3109/17435390.2015.1078854
  85. Williams K., Milner J., Boudreau M.D., Gokulan K., Cerniglia C.E., Khare S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9: 279–289.10.3109/17435390.2014.921346
  86. Wong S.W., Leung P.T., Djurisic A.B., Leung K.M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem., 396: 609–618.10.1007/s00216-009-3249-z
  87. Wu J., Zheng Y., Wen X., Lin Q., Chen X., Wu Z. (2014). Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: Investigation in vitro and in vivo. Biomed. Mater., 9: 035–045.10.1088/1748-6041/9/3/035005
  88. Wzorek Z., Konopka M. (2007). Nanosilver – a new bactericidal agent (in Polish). Czas. Techn. Chemia, 104: 175–181.
  89. Xia T., Kovochich M., Liong M., Madler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2: 2121–2134.10.1021/nn800511k
  90. Xiong D., Fang T., Yu L., Sima X., Zhu W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ., 409: 1444–1452.10.1016/j.scitotenv.2011.01.015
  91. Yang W., Shen C., Ji Q., An H., Wang J., Liu Q., Zhang Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 2: 2121–2134.10.1088/0957-4484/20/8/085102
  92. Yousef J.M., Danial E.N. (2012). In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci., 2: 38–42.10.5923/j.health.20120204.04
  93. Zhang L., Jiang Y., Ding Y., Povey M., York D., (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 9: 479–489.10.1007/s11051-006-9150-1
  94. Zhao Y.C., Shu T.X., Xiao Y.X., Qiu S.X., Pan Q.J., Tang X.Z. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broiler. Biol. Trace Elem. Res., 160: 361–367.10.1007/s12011-014-0052-2
  95. Zhisheng C.J. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese J. Anim. Nutr., 8: 23–29.
DOI: https://doi.org/10.2478/aoas-2018-0029 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 879 - 898
Submitted on: Feb 5, 2018
Accepted on: May 20, 2018
Published on: Nov 2, 2018
Published by: National Research Institute of Animal Production
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Maciej Bąkowski, Bożena Kiczorowska, Wioletta Samolińska, Renata Klebaniuk, Antoni Lipiec, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.