Have a personal or library account? Click to login
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review Cover

Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review

Open Access
|Aug 2018

References

  1. Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). Epigenetic alteration of donor cells with histone deacetylase inhibitor m-carboxycinnamic acid bishydroxymide improves the in vitro developmental competence of buffalo (Bubalus bubalis) cloned embryos. Cell. Reprogram., 20: 76-88.10.1089/cell.2017.0035
  2. Allegrucci C., Thurston A., Lucas E., Young L. (2005). Epigenetics and the germline. Reproduction, 129: 137-149.10.1530/rep.1.00360
  3. Anckaert E., Fair T. (2015). DNAmethylation reprogramming during oogenesis and interference by reproductive technologies: Studies in mouse and bovine models. Reprod. Fertil. Dev., 27: 739-754.10.1071/RD14333
  4. Armstrong L.M., Lako W., Dean W., Stojkovic M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24: 805-814.10.1634/stemcells.2005-0350
  5. Bonk A.J., Cheong H.T., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2007). Correlation of developmental differences of nuclear transfer embryos cells to the methylation profiles of nuclear transfer donor cells in swine. Epigenetics, 2: 179-186.10.4161/epi.2.3.4844
  6. Bonk A.J., Li R., Lai L., Hao Y., Liu Z., Samuel M., Fergason E.A., Whitworth K.M., Murphy C.N., Antoniou E., Prather R.S. (2008). Aberrant DNAmethylation in porcine in vitro-, parthenogenetic-, and somatic cell nuclear transfer-produced blastocysts. Mol. Reprod. Dev., 75: 250-264.10.1002/mrd.20786
  7. Bortvin A., Eggan K ., Skaletsky H ., Akutsu H ., Berry D .L., Yanagimachi R ., Page D.C., Jaenisch R. (2003). Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 130: 1673-1680.10.1242/dev.00366
  8. Bowles E.J., Campbell K.H., St John J.C. (2007). Nuclear transfer: preservation ofanuclear genome at the expense of its associated mt DNAgenome(s). Curr. Top. Dev. Biol., 77: 251-290.10.1016/S0070-2153(06)77010-7
  9. Burgstaller J.P., Schinogl P., Dinnyes A., Müller M., Steinborn R. (2007). Mitochondrial DNAheteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol., 7: 141.10.1186/1471-213X-7-141
  10. Campbell K.H., Alberio R. (2003). Reprogramming the genome: role of the cell cycle. Reprod. Suppl., 61: 477-494.
  11. Cezar G.G., Bartolomei M.S., Forsberg E.J., First N.L., Bishop M.D., Eilert -sen K.J. (2003). Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod., 68: 1009-1014.10.1095/biolreprod.102.010181
  12. Chavatte-Palmer P., Heyman Y., Richard C., Monget P., Le Bourhis D., Kann G., Chilliard Y., Vignon X., Renard J.P. (2002). Clinical, hormonal, and hematologic characteristics of bovine calves derived from nuclei from somatic cells. Biol. Reprod., 66: 1596-1603.10.1095/biolreprod66.6.1596
  13. Corry G.N., Tanasijevic B., Barry E.R., Krueger W., Rasmussen T.P. (2009). Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C, 87: 297-313.10.1002/bdrc.20165
  14. Cui W., Wylie D., Aslam S., Dinnyes A., King T., Wilmut I., Clark A.J. (2003). Telomerase- immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol. Reprod., 69: 15-21.10.1095/biolreprod.102.013250
  15. Dean W., Santos F., Reik W. (2003). Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol., 14: 93-100.10.1016/S1084-9521(02)00141-6
  16. Deshmukh R.S., Østrup O., Østrup E., Vejlsted M., Niemann H., Lucas- Hahn A., Petersen B., Li J., Callesen H., Hyttel P., (2011). DNAmethylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer. Epigenetics, 6: 177-187.10.4161/epi.6.2.13519
  17. De Sousa P.A., King T., Harkness L., Young L.E., Walker S.K., Wilmut I. (2001). Evaluation of gestational deficiencies in cloned sheep fetuses and placentae. Biol. Reprod., 65: 23-30.10.1095/biolreprod65.1.23
  18. Dindot S.V., Farin P.W., Farin C.E., Romano J., Walker S., Long C., Piedrahita J.A. (2004). Epigenetic and genomic imprinting analysis in nuclear transfer derived Bos gaurus/Bos taurus hybrid fetuses. Biol. Reprod., 71: 470-478.10.1095/biolreprod.103.025775
  19. Eggan K., Akutsu H., Hochedlinger K., Rideout III W., Yanagimachi R., Jaen -isch R. (2000). X-chromosome inactivation in cloned mouse embryos. Science, 290: 1578-1581.10.1126/science.290.5496.1578
  20. Eilertsen K.J., Power R.A., Harkins L.L., Misica P. (2007). Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci., 98: 129-146.10.1016/j.anireprosci.2006.10.019
  21. Enright B.P., Kubota C., Yang X., Tian X.C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin Aor 5-aza-2’-deoxycytidine. Biol. Reprod., 69: 896-901.10.1095/biolreprod.103.017954
  22. Esteves T.C., Balbach S.T., Pfeiffer M.J., Araúzo-Bravo M.J., Klein D.C., Sinn M., Boiani M. (2011). Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell, 10: 80-95.10.1111/j.1474-9726.2010.00644.x
  23. Fernandez-Gonzales R., Moreira P., Bilbao A., Jimenez A., Perez- Crespo M., Ramirez M.A., De Fonseca F.R., Pintado B., Gutierrez- Adan A. (2004). Longterm effect of in vitro culture of mouse embryos with serum on m RNAexpression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA, 101: 5880-5885.10.1073/pnas.0308560101
  24. Fournier C., Goto Y., Ballestar E., Delaval K., Hever A.M., Esteller M., Feil R. (2002). Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. EMBO J., 21: 6560-6570.10.1093/emboj/cdf655
  25. Han Y.M., Kang Y.K., Koo D.B., Lee K.K. (2003). Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology, 59: 33-44.10.1016/S0093-691X(02)01271-2
  26. Hiendleder S. (2007). Mitochondrial DNAinheritance after SCNT. Adv. Exp. Med. Biol., 591: 103-116.10.1007/978-0-387-37754-4_8
  27. Hiendleder S., Prelle K., Brüggerhoff K., Reichenbach H.D., Wenigerkind H., Bebbere D., Stojkovic M., Müller S., Brem G., Zakhartchenko V., Wolf E. (2004). Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses. Biol. Reprod., 70: 1196-1205.10.1095/biolreprod.103.023028
  28. Hill J.R., Schlafer D.H., Fisher P.J., Davies C.J. (2002). Abnormal expression of trophoblast major histocompatibility complex class Iantigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response. Biol. Reprod., 67: 55-63.10.1095/biolreprod67.1.55
  29. Hossain M.M., Tesfaye D., Salilew- Wondim D., Held E., Pröll M.J., Rings F., Kir-fel G., Looft C., Tholen E., Uddin J., Schellander K., Hoelker M. (2014). Massive deregulation of mi RNAs from nuclear reprogramming errors during trophoblast differentiation for placentogenesis in cloned pregnancy. BMC Genomics, 15: 43.10.1186/1471-2164-15-43
  30. Hörmanseder E., Simeone A., Allen G.E., Bradshaw C.R., Figlmüller M., Gur-don J., Jullien J. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell, 21: 135-143.e6.10.1016/j.stem.2017.03.003
  31. Huang J., Zhang H., Yao J., Qin G., Wang F., Wang X., Luo A., Zheng Q., Cao C., Zhao J. (2016). BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction, 151: 39-49.10.1530/REP-15-0460
  32. Inoue K., Kohda T., Lee J., Ogonuki N., Mochida K., Noguchi Y., Tanemura K., Kaneko-Ishino T., Ishino F., Ogura A. (2002). Faithful expression of imprinted genes in cloned mice. Science, 295: 297.10.1126/science.295.5553.297
  33. Iurlaro M.,von Meyenn F., Reik W. (2017). DNAmethylation homeostasis in human and mouse development. Curr. Opin. Genet. Dev., 43: 101-109.10.1016/j.gde.2017.02.003
  34. Jafarpour F., Hosseini S.M., Ostadhosseini S., Abbasi H., Dalman A., Nasr-Es -fahani M.H. (2017). Comparative dynamics of 5-methylcytosine reprogramming and TETfamily expression during preimplantation mammalian development in mouse and sheep. Theriogenology, 89: 86-96.10.1016/j.theriogenology.2016.10.010
  35. Jeon B.G., Coppola G., Perrault S.D., Rho G.J., Betts D.H., King W.A. (2008). S-adenosylhomocysteine treatment of adult female fibroblasts alters X-chromosome inactivation and improves in vitro embryo development after somatic cell nuclear transfer. Reproduction, 135: 815-828.10.1530/REP-07-0442
  36. Jouneau A., Renard J.P. (2003). Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev., 13: 486-491.10.1016/j.gde.2003.08.007
  37. Jullien J., Vodnala M., Pasque V., Oikawa M., Miyamoto K., Allen G., David S.A., Brochard V., Wang S., Bradshaw C., Koseki H., Sartorelli V., Beaujean N., Gurdon J. (2017). Gene resistance to transcriptional reprogramming following nuclear transfer is directly mediated by multiple chromatin-repressive pathways. Mol. Cell, 65: 873-884.e8.10.1016/j.molcel.2017.01.030
  38. Kang Y.K., Park J.S., Koo D.B., Choi Y.H., Kim S.U., Lee K.K., Han Y.M. (2002). Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. EMBO J., 21: 1092-1100.10.1093/emboj/21.5.1092
  39. Kang Y.K., Yeo S., Kim S.H., Koo D.B., Park J.S., Wee G., Han J.S., Oh K.B., Lee K.K., Han Y.M. (2003). Precise recapitulation of methylation change in early cloned embryos. Mol. Reprod. Dev., 66: 32-37.10.1002/mrd.10330
  40. Kim J.M., Ogura A., Nagata M., Aoki F. (2002). Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol. Reprod., 67: 760-766.10.1095/biolreprod.101.000612
  41. Kim S.H., Kang Y.K., Koo D.B., Kang M.J., Moon S.J., Lee K.K., Han Y.M. (2004). Differential DNAmethylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem. Biophys. Res. Commun., 324: 58-63.10.1016/j.bbrc.2004.09.023
  42. Koike T., Wakai T., Jincho Y., Sakashita A., Kobayashi H., Mizutani E., Wakaya -ma S., Miura F., Ito T., Kono T. (2016). DNAmethylation errors in cloned mouse sperm by germ line barrier evasion. Biol. Reprod., 94: 1-7.10.1095/biolreprod.116.138677
  43. Koo D.B., Kang Y.K., Choi Y.H., Park J.S., Kim H.N., Oh K.B., Son D.S., Park H., Lee K.K., Han Y.M. (2002). Aberrant allocations of inner cell mass and trophectoderm cells in bovine nuclear transfer blastocysts. Biol. Reprod., 67: 487-492.10.1095/biolreprod67.2.487
  44. Kourmouli N., Jeppesen P., Mahadevhaiah S., Burgoyne P., Wu R., Gilbert D.M., Bongiorni S., Prantera G., Fanti L., Pimpinelli S., Shi W., Fundele R., Singh P.B. (2004). Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J. Cell Sci., 117: 2491-2501.10.1242/jcs.01238
  45. Kungulovski G., Jeltsch A. (2016). Epigenome editing: state of the art, concepts, and perspectives. Trends Genet., 32: 101-113.10.1016/j.tig.2015.12.001
  46. Lee J., Inoue K., Ono R., Ogonuki N., Kohda T., Kaneko-Ishino T., Ogura A., Ishino F. (2003). Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development, 129: 1807-1817.10.1242/dev.129.8.1807
  47. Liao H.F., Mo C.F., Wu S.C., Cheng D.H., Yu C.Y., Chang K.W., Kao T.H., Lu C.W., Pin-skaya M., Morillon A., Lin S.S., Cheng W.T., Bourc'his D., Bestor T., Sung L.Y., Lin S.P. (2015). Dnmt3l-knockout donor cells improve somatic cell nuclear transfer reprogramming efficiency. Reproduction, 150: 245-256.10.1530/REP-15-0031
  48. Liu H., Kim J.M., Aoki F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early preimplantation embryos. Development, 131: 2269-2280.10.1242/dev.01116
  49. Liu X., Wang Y., Gao Y., Su J., Zhang J., Xing X., Zhou C., Yao K., An Q., Zhang Y. (2018). H3K9 demethylase KDM4Eis an epigenetic regulator for bovine embryonic development andadefective factor for nuclear reprogramming. Development, 145: dev158261.10.1242/dev.158261
  50. Lorincz M.C., Schubeler D., Hutchinson S.R., Dickerson D.R., Groudine M. (2002). DNAmethylation density influences the stability of an epigenetic imprint and Dnmt3a/bindependent de novo methylation. Mol. Cell. Biol., 22: 7572-7580.10.1128/MCB.22.21.7572-7580.2002
  51. Lorthongpanich C., Solter D., Lim C.Y. (2010). Nuclear reprogramming in zygotes. Int. J. Dev. Biol., 54: 1631-1640.10.1387/ijdb.103201cl
  52. Lucifero D., Mertineit C., Clarke H.J., Bestor T.H., Trasler J.M. (2002). Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79: 530-538.10.1006/geno.2002.6732
  53. Lucifero D., Chaillet J.R., Trasler J.M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod., 10: 3-18.10.1093/humupd/dmh002
  54. Ma P.J., Zhang H., Li R., Wang Y.S., Zhang Y., Hua S. (2015). P53-mediated repression of the reprogramming in cloned bovine embryos through direct interaction with HDAC1 and indirect interaction with DNMT3A. Reprod. Domest. Anim., 50: 400-409.10.1111/rda.12502
  55. Mann M.R.W., Bartolomei M.S. (2002). Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol., 3: reviews1003.1-reviews1003.4.10.1186/gb-2002-3-2-reviews1003
  56. Mann M.R.W., Chung Y.G., Nolen L.D., Verona R.I., Latham K.E., Bartolomei M.S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69: 902-914.10.1095/biolreprod.103.017293
  57. Mann M.R.W., Lee S.S., Doherty A.S., Verona R.I., Nolen L.D., Schultz R.M., Bar-tolomei M.S. (2004). Selective loss of imprinting in the placenta following preimplantation development in culture. Development, 131: 3727-3735.10.1242/dev.01241
  58. Masala L., Burrai G.P., Bellu E., Ariu F., Bogliolo L., Ledda S., Bebbere D. (2017). Methylation dynamics during folliculogenesis and early embryo development in sheep. Reproduction, 153: 605-619.10.1530/REP-16-0644
  59. Miki H., Inoue K., Kohda T., Honda A., Ogonuki N., Yuzuriha M., Mise N., Ma -tsui Y., Baba T., Abe K., Ishino F., Ogura A. (2005). Birth of mice produced by germ cell nuclear transfer. Genesis, 41: 81-86.10.1002/gene.20100
  60. Moreira P.N., Robl J.M., Collas P. (2003). Architectural defects in pronuclei of mouse nuclear transplant embryos. J. Cell Sci., 116: 3713-3720.10.1242/jcs.00692
  61. Narbonne P., Miyamoto K., Gurdon J.B. (2012). Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr. Opin. Genet. Dev., 22: 450-458.10.1016/j.gde.2012.09.002
  62. Novak S., Paradis F., Savard C., Tremblay K., Sirard M.A. (2004). Identification of porcine oocyte proteins that are associated with somatic cell nuclei after co-incubation. Biol. Reprod., 71: 1279-1289.10.1095/biolreprod.103.027037
  63. Obata Y., Kono T. (2002). Maternal primary imprinting is established ataspecific time for each gene throughout oocyte growth. J. Biol. Chem., 277: 5285-5289.10.1074/jbc.M108586200
  64. Ogawa H., Ono Y., Shimozawa N., Sotomaru Y., Katsuzawa Y., Hiura H., Ito M., Kono T. (2003). Disruption of imprinting in cloned mouse fetuses from embryonic stem cells. Reproduction, 126: 549-557.10.1530/rep.0.1260549
  65. Paoloni-Giacobino A., Chaillet J.R. (2004). Genomic imprinting and assisted reproduction. Reprod. Health, 1: 6.10.1186/1742-4755-1-6
  66. Park K.Y., Sellars E.A., Grinberg A., Huang S.P., Pfeifer K. (2004). The H19 differentially methylated region marks the parental origin ofaheterologous locus without gametic DNA methylation. Mol. Cell. Biol., 24: 3588-3595.10.1128/MCB.24.9.3588-3595.2004
  67. Park M.R., Cho S.K., Lee S.Y., Choi Y.J., Park J.Y., Kwon D.N., Son W.J., Paik S.S., Kim T., Han Y.M., Kim J.H. (2005). Arare and often unrecognized cerebromeningitis and hemodynamic disorder: Amajor cause of sudden death in somatic cell cloned piglets. Proteomics, 5: 1928-1939.10.1002/pmic.200401079
  68. Pfister-Genskow M., Myers C., Childs L.A., Lacson J.C., Patterson T., Betthau-ser J.M., Goueleke P.J., Koppang R.W., Lange G., Fisher P., Watt S.R., Fors -berg E.J., Zheng Y., Leno G.H., Schultz R.M., Liu B., Chetia C., Yang X., Hoe-schele I., Eilertsen K.J. (2005). Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: improper reprogramming of genes required for development. Biol. Reprod., 72: 546-555.10.1095/biolreprod.104.031799
  69. Prather R.S., Ross J.W., Isom S.C., Green J.A. (2009). Transcriptional, posttranscriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc. Reprod. Fertil. Suppl., 66: 165-176.
  70. Prokopuk L., Stringer J.M., Hogg K., Elgass K.D., Western P.S. (2017). PRC2 is required for extensive reorganization of H3K27me3 during epigenetic reprogramming in mouse fetal germ cells. Epigenetics Chromatin, 10: 7.10.1186/s13072-017-0113-9
  71. Reik W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature, 447: 425-432.10.1038/nature05918
  72. Reik W., Santos F., Dean W. (2003 a). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59: 21-32.10.1016/S0093-691X(02)01269-4
  73. Reik W., Santos F., Mitsuya K., Morgan H., Dean W. (2003 b). Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment? Philos. Trans. R. Soc. Lond., B, Biol. Sci., 358: 1403-1409.10.1098/rstb.2003.1326169323814511488
  74. Renard J.P., Zhou Q., Le Bourhis D., Chavatte-Palmer P., Hue I., Heyman Y., Vignon X. (2002). Nuclear transfer technologies: between successes and doubts. Theriogenology, 57: 203-222.10.1016/S0093-691X(01)00667-7
  75. Rodriguez-Osorio N., Urrego R., Cibelli J.B., Eilertsen K., Memili E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78: 1869-1886.10.1016/j.theriogenology.2012.05.030
  76. Ruddock N.T., Wilson K.J., Cooney M.A., Korfiatis N.A., Tecirlioglu R.T., French A.J. (2004). Analysis of imprinted messenger RNAexpression during bovine preimplantation development. Biol. Reprod., 70: 1131-1135.10.1095/biolreprod.103.022236
  77. Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393-422.10.22358/jafs/67034/2005
  78. Samiec M., Skrzyszowska M. (2005). Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique:areview. Czech J. Anim. Sci., 50: 185-195.10.17221/4142-CJAS
  79. Santos F., Zakhartchenko V., Stojkovic M., Peters A., Jenuwein T., Wolf E., Reik W., Dean W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol., 13: 1116-1121.10.1016/S0960-9822(03)00419-6
  80. Santos F., Dean W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction, 127: 643-651.10.1530/rep.1.00221
  81. Sarmento O.F., Digilio L.C., Wang Y., Perlin J., Herr J.C., Allis C.D., Coonrod S.A. (2004). Dynamic alterations of specific histone modifications during early murine development. J. Cell Sci., 117: 4449-4459.10.1242/jcs.01328
  82. Seki Y., Hayashi K., Itoh K., Mizugaki M., Saitou M., Matsui Y. (2005). Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol., 278: 440-458.10.1016/j.ydbio.2004.11.025
  83. Selokar N.L., Saini M., Agrawal H., Palta P., Chauhan M.S., Manik R., Singla S.K. (2015). Downregulation of DNAmethyltransferase 1 in zona-free cloned buffalo (Bubalus bubalis) embryos by small interefering RNAimproves in vitro development but does not alter DNAmethylation level. Cell. Reprogram., 17: 89-94.10.1089/cell.2014.0056
  84. Sepulveda- Rincon L.P., Solanas Edel L., Serrano- Revuelta E., Ruddick L., Maalouf W.E., Beaujean N. (2016). Early epigenetic reprogramming in fertilized, cloned, and parthenogenetic embryos. Theriogenology, 86: 91-98.10.1016/j.theriogenology.2016.04.022
  85. Shi L., Wu J. (2009). Epigenetic regulation in mammalian preimplantation embryo development. Reprod. Biol. Endocrinol., 7: 59.10.1186/1477-7827-7-59
  86. Shi W., Zakhartchenko V., Wolf E. (2003 a). Epigenetic reprogramming in mammalian nuclear transfer. Differentiation, 71: 91-113.10.1046/j.1432-0436.2003.710201.x12641564
  87. Shi W., Hoeflich A., Flaswinkel H., Stojkovic M., Wolf E., Zakhartchenko V. (2003 b). Induction ofasenescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos. Biol. Reprod., 69: 301-309.10.1095/biolreprod.102.01211212646489
  88. Shi W., Dirim F., Wolf E., Zakhartchenko V., Haaf T. (2004). Methylation reprogramming and chromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos. Biol. Reprod., 71: 340-347.10.1095/biolreprod.103.024554
  89. Sim B.W., Park C.W., Kang M.H., Min KS. (2017). Abnormal gene expression in regular and aggregated somatic cell nuclear transfer placentas. BMC Biotechnol., 17: 34.10.1186/s12896-017-0355-4
  90. Simonsson S., Gurdon J. (2004). DNAdemethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell Biol., 6: 984-990.10.1038/ncb1176
  91. Srirattana K., Matsukawa K., Akagi S., Tasai M., Tagami T., Nirasawa K., Na -gai T., Kanai Y., Parnpai R., Takeda K. (2011). Constant transmission of mitochondrial DNAin intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim. Sci. J., 82: 236-243.10.1111/j.1740-0929.2010.00827.x
  92. Srivastava M., Frolova E., Rottinghaus B., Boe S.P., Grinberg A., Lee E., Love P.E., Pfeifer K. (2003). Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J. Biol. Chem., 278: 5977-5983.10.1074/jbc.M208437200
  93. Vignon X., Zhou Q., Renard J.P. (2002). Chromatin asaregulative architecture of the early developmental functions of mammalian embryos after fertilization or nuclear transfer. Cloning Stem Cells, 4: 363-377.10.1089/153623002321025041
  94. Wang Y., Su J., Wang L., Xu W., Quan F., Liu J., Zhang Y. (2011). The effects of 5-aza-2'- deoxycytidine and trichostatin Aon gene expression and DNAmethylation status in cloned bovine blastocysts. Cell. Reprogram., 13: 297-306.10.1089/cell.2010.0098
  95. Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55-65.10.1089/cell.2017.0023
  96. Whitworth K.M., Prather R.S. (2010). Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming? Mol. Reprod. Dev., 77: 1001-1015.10.1002/mrd.21242
  97. Wrenzycki C., Lucas- Hahn A., Herrmann D., Lemme E., Korsawe K., Nie-mann H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod., 66: 127-134.10.1095/biolreprod66.1.127
  98. Wrenzycki C., Niemann H. (2003). Epigenetic reprogramming in early embryonic development: effects of in-vitro production and somatic nuclear transfer. Reprod. Biomed. Online, 7: 649-656.10.1016/S1472-6483(10)62087-1
  99. Xie B., Zhang H., Wei R., Li Q., Weng X., Kong Q., Liu Z. (2016). Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction, 151: 9-16.10.1530/REP-15-0338
  100. Yamanaka K., Sugimura S., Wakai T., Kawahara M., Sato E. (2009). Acetylation level of histone H3 in early embryonic stages affects subsequent development of miniature pig somatic cell nuclear transfer embryos. J. Reprod. Dev., 55: 638-644.10.1262/jrd.20245
  101. Yamazaki Y., Mellissa R., Mann M.R.W., Lee S.S., Marh J., Mc Carrey J.R., Yanagi -machi R., Bartolomei M.S. (2003). Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc. Natl. Acad. Sci. USA, 100: 12207-12212.10.1073/pnas.2035119100
  102. Yan Z.H., Zhou Y.Y., Fu J., Jiao F., Zhao L.W., Guan P.F., Huang S.Z., Zeng Y.T., Zeng F. (2010). Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol., 10: 31.10.1186/1471-213X-10-31
  103. Yan H., Yan Z., Ma Q., Jiao F., Huang S., Zeng F., Zeng Y. (2011). Association between mitochondrial DNAhaplotype compatibility and increased efficiency of bovine intersubspecies cloning. J. Genet. Genomics, 38: 21-28.10.1016/j.jcg.2010.12.003
  104. Yang X., Smith S.L., Tian X.C., Lewin H.A., Renard J.P., Wakayama T. (2007). Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet., 39: 295-302.10.1038/ng1973
  105. Young L.E., Schnieke A.E., Mc Creath K.J., Wieckowski S., Konfortova G., Fer-nandes K., Ptak G., Kind A.J., Wilmut I., Loi P., Feil R. (2003). Conservation of IGF2- H19 and IGF2Rimprinting in sheep: effects of somatic cell nuclear transfer. Mech. Dev., 120: 1433-1442.10.1016/j.mod.2003.09.006
  106. Zhang X., Wang D., Han Y., Duan F., Lv Q., Li Z. (2014). Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J. Assist. Reprod. Genet., 31: 1511-1517.10.1007/s10815-014-0320-2
  107. Zhang Z., Zhai Y., Ma X., Zhang S., An X., Yu H., Li Z. (2018). Down-regulation of H3K- 4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell. Physiol. Biochem., 45: 1529-1540.10.1159/000487579
  108. Zhao J., Whyte J., Prather R.S. (2010). Effect of epigenetic regulation during swine embryogenesis and on cloning by nuclear transfer. Cell Tissue Res., 341: 13-21.10.1007/s00441-010-1000-x
  109. Zuo Y., Su G., Cheng L., Liu K., Feng Y., Wei Z., Bai C., Cao G., Li G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8: 65847-65859.10.18632/oncotarget.19504
DOI: https://doi.org/10.2478/aoas-2018-0015 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 623 - 638
Submitted on: Dec 18, 2017
|
Accepted on: Mar 12, 2018
|
Published on: Aug 1, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2018 Marcin Samiec, Maria Skrzyszowska, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.