Have a personal or library account? Click to login
Epigenetic Basis of Molecular Changes in Animal Cells with Particular Regard to Embryonic Development – A Review / Epigenetyczne Podstawy Przemian Molekularnych Zachodzących W Komórkach Zwierzęcych, Ze Szczególnym Uwzględnieniem Rozwoju Embrionalnego – Artykuł Przeglądowy Cover

Epigenetic Basis of Molecular Changes in Animal Cells with Particular Regard to Embryonic Development – A Review / Epigenetyczne Podstawy Przemian Molekularnych Zachodzących W Komórkach Zwierzęcych, Ze Szczególnym Uwzględnieniem Rozwoju Embrionalnego – Artykuł Przeglądowy

By: Joanna Romanek  
Open Access
|Oct 2013

References

  1. Allegrucci C., Thurston A., Lucas E., Young L. (2005). Epigenetics and the germline. Reproduction, 129: 137-149.
  2. Barlow D.P., Stöger R., Herrmann B.G., Saito K., Schweifer N. (1991). The mouse insulin-like type-2 receptor is imprinted and closely linked to the Tme locus. Nature, 349: 84-8 10.1038/349084a01845916
  3. Bartolomei M.S., Zemel S., Tilghman S.M. (1991). Parental imprinting of the mouse H19 gene. Nature, 351: 153-155.
  4. Belinsky S.A. (2004). Gene-promoter hypermethylation asabiomarker in lung cancer. Nat Rev. Cancer, 4: 707-717.
  5. Bestor T.H. (2000). The DNAmethyltransferases of mammals. Hum. Mol. Genet., 9: 2395-2402.
  6. Bi Y., Lv Z., Wang Y., Hai T., Huo R., Zhou Z., Zhou Q., Sha J. (2011). WDR82,akey epigenetics-related factor, playsacrucial role in normal early embryonic development in mice. Biol. Reprod., 84: 756-764.
  7. Biliya S., Bulla L.A. Jr. (2010). Genomic imprinting: the influence of differential methylation in the two sexes. Exp. Biol. Med., 235: 139-147.
  8. Brena R.M., Huang T.H., Plass C. (2006). Quantitative assessment of DNAmethylation: Potential applications for disease diagnosis, classification, and prognosis in clinical settings. J. Mol. Med., 84: 365-377.
  9. Brinkman A.B., Stunnenberg H.G. (2009). Strategies for epigenome analysis. In: Epigenomics, Ferguson-Smith A.C., Greally J.M., Martienssen R.A. (eds). Springer Sci. Business Media, pp. 3-17.10.1007/978-1-4020-9187-2_1
  10. Brower V. (2011). Epigenetics: Unravelling the cancer code. Nature, 471: 12-13.
  11. Carrell D.T. (2012). Epigenetics of the male gamete. Fertil. Steril., 97: 267-274.
  12. De Chiara T.M., Robertson E.J., Efstratiadis A. (1991). Parental imprinting of the mouse insulin-like growth factor IIgene. Cell, 64: 849-859.
  13. Donnison M., Beaton A., Davey H.W., Broadhurst R., L ' Huillier P., Pfeffer P.L. (2005). Loss of the extraembryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development, 132: 2299-2308.
  14. Eads C.A., Danenberg K.D., Kawakami K., Saltz L.B., Danenberg P.V., Laird P.W. (1999). Cp Gisland hypermethylation in human colorectal tumors is not associated with DNAmethyltransferase overexpression. Cancer Res., 59: 2302-2306.
  15. El - Deiry W.S., Nelkin B.D., Celano P., Yen R.W., Falco J.P., Hamilton S.R., Bay- lin S.B., (1991). High expression of the DNAmethyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA, 88: 3470-3474.
  16. El Hajj N., Trapphoff T., Linke M., May A., Hansmann T., Kuhtz J., Reifen - berg K., Heinzmann J., Niemann H., Daser A., Eichenlaub - Ritter U., Zech - ner U., Haaf T. (2011). Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics, 6: 1176-1188.
  17. Fryxell K.J., Zuckerkandl E. (2000). Cytosine deamination playsaprimary role in the evolution of mammalian isochores. Mol. Biol. Evol., 17: 1371-1383.
  18. Fuks F. (2005). DNAmethylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev., 15: 490-495.
  19. Gasperowicz M., Natale D.R. (2011). Establishing three blastocyst lineages-then what?. Biol. Reprod., 84: 621-630.
  20. Goll M.G., Bestor T.H. (2005). Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem., 74: 481-514.
  21. Goll M.G., Kirpekar F., Maggert K.A., Yoder J.A., Hsieh C.L., Zhang X., Golic K.G., Jacobsen S.E., Bestor T.H. (2006). Methylation of t RNAAsp by the DNAmethyltransferase homolog Dnmt2. Science, 311: 395-398.
  22. Gos M. (2013). Epigenetic mechanisms of gene expression regulation in neurological diseases. Acta Neurobiol. Exp., 73: 19-37.
  23. Hayette S., Thomas X., Jallades L., Chabane K., Charlot C., Tigaud I., Gazz o S., Morisset S., Cornillet- Lefebvre P., Plesa A., Huet S., Renneville A., Salles G., Nicolini F.E., Magaud J.P., Michallet M. (2012). High DNAmethyltransferase DNMT3Blevels:apoor prognostic marker in acute myeloid leukemia. PLo S One, 7: e51527.
  24. Hemberger M., Udayashankar R., Tesar P., Moore H., Burton G.J. (2010). ELF5- enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta. Hum. Mol. Genet., 19: 2456-2467.
  25. Holliday R., Pugh J.E. (1975). DNAmodification mechanisms and gene activity during development. Science, 187: 226-232.
  26. Iqbal K., Kues W.A., Baulain U., Garrels W., Herrmann D., Niemann H. (2011). Species- specific telomere length differences between blastocyst cell compartments and ectopic telomere extension in early bovine embryos by human telomerase reverse transcriptase. Biol. Reprod., 84: 723-733.
  27. Issa J.P., Ahuja N., Toyota M., Bronner M.P., Brentnall T.A. (2001). Accelerated age-related Cp Gisland methylation in ulcerative colitis. Cancer Res., 61: 3573-3577.
  28. Jeltsch A., Nellen W., Lyko F. (2006). Two substrates are better than one: dual specificities for Dnmt2 methyltransferases. Trends Biochem. Sci., 31: 306-308.
  29. Jirtle R.L., Skinner M.K. (2007). Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 8: 253-262.
  30. Jones P.A. (1997). DNAmethylation and cancer. In: Encyclopedia of cancer. Vol 1. Editiorial directors; Bertino JR, ed-in-chief. San Diego. London, Boston, New York, Sydney, Tokyo, Toronto. Academic Press, pp. 501-507.
  31. Kawahara M., Morita S., Takahashi N., Kono T. (2009). Defining contributions of paternally methylated imprinted genes at the Igf2-H19 and Dlk1-Gtl2 domains to mouse placentation by transcriptomic analysis. J. Biol. Chem., 284: 17751-17765.
  32. Kobayashi H., Sakurai T., Imai M., Takahashi N., Fukuda A., Yayoi O., Sato S., Nakabayashi K., Hata K., Sotomaru Y., Suzuki Y., Kono T. (2012). Contribution of intragenic DNAmethylation in mouse gametic DNAmethylomes to establish oocyte-specific heritable marks. PLo S Genetics, 8: e1002440.
  33. Kohda T., Ishino F. (2013). Embryo manipulation via assisted reproductive technology and epigenetic asymmetry in mammalian early development. Philos T. Roy. Soc. B., 368: 20120353.
  34. Kuckenberg P., Buhl S., Woynecki T.,van Fürden B., Tolkunova E., Seiffe F., Moser M., Tomilin A., Winterhager E., Schorle H. (2010). The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol. Cell. Biol., 30: 3310-3320.
  35. Lee P.J., Washer L.L., Law D.J., Boland C.R., Horon I.L., Feinberg A.P. (1996). Limited up-regulation of DNAmethyltransferase in human colon cancer reflecting increased cell proliferation. Proc. Natl. Acad. Sci. USA, 93: 10366-10370.
  36. Loh Y.H., Zhang W., Chen X., George J., Ng H.H. (2007). Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Gene. Dev., 21: 2545-2557.
  37. Market Velker B.A., Denomme M.M., Mann M.R. (2012). Loss of genomic imprinting in mouse embryos with fast rates of preimplantation development in culture. Biol. Reprod., 86: 1-16.
  38. Ng H.H., Bird A. (1999). DNAmethylation and chromatin modification. Curr. Opin. Genet. Dev., 9: 158-163.
  39. Ng R.K., Dean W., Dawson C., Lucifero D., Madeja Z., Reik W., Hemberger M. (2008). Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol., 10: 1280-1290.
  40. Niemann H., Tian X.C., King W.A., Lee R.S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 135: 151-163.
  41. Petronis A. (2010). Epigenetics asaunifying principle in the aetiology of complex traits and diseases. Nature, 465: 721-727.
  42. Reik W., Santos F., Dean W. (2003). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59: 21-32.
  43. Riggs A.D. (1975). Xinactivation, differentiation, and DNAmethylation. Cytogenet. Cell Genet., 14: 9-25.
  44. Robertson K.D., Wolffe A.P. (2000). DNAmethylation in health and disease. Nature Reviews. Genetics, 1: 11-19.
  45. Saitou M., Kagiwada S., Kurimoto K. (2012). Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 139: 15-31.
  46. Santos F., Dean W. (2004). Epigenetic reprogramming during early development in mammals. Reproduction, 127: 643-651.
  47. Schoeftner S., Blanco R., Lopezde Silanes I., Muñoz P., Gómez- López G., Flores J.M., Blasco M.A. (2009). Telomere shortening relaxes Xchromosome inactivation and forces global transcriptome alterations. Proc. Natl. Acad. Sci. USA, 106: 19393-19398. Shivapurkar N., Stastny V., Suzuki M., Wistuba I.I., Li L., Zheng Y., Feng Z., Hol B., Prinsen C., Thunnissen F.B., Gazdar A.F. (2007). Application ofamethylation gene panel by quantitative PCRfor lung cancers. Cancer Lett., 247: 56-71.
  48. Smith C.S., Berg D.K., Berg M., Pfeffer P.L. (2010). Nuclear transfer-specific defects are not apparent during the second week of embryogenesis in cattle. Cell Reprogram., 12: 699-707.
  49. Soejima H., Higashimoto K. (2013). Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders. J. Hum. Genet., doi: 10.1038/jhg.2013.51.10.1038/jhg.2013.5123719190
  50. Sulewska A., Niklinska W., Kozlowski M., Minarowski L., Naumnik W., Niklin - ski J., Dabrowska K., Chyczewski L. (2007 a). Detection of DNAmethylation in eucaryotic cells. Folia Histochem. Cyto., 45: 315-324.
  51. Sulewska A., Niklinska W., Kozlowski M., Minarowski L., Naumnik W., Niklin - ski J., Dabrowska K., Chyczewski L. (2007 b). DNAmethylation in states of cell physiology and pathology. Folia Histochem. Cyto., 45: 149-158.
  52. Takahashi N., Okamoto A., Kobayashi R., Shirai M., Obata Y., Ogawa H., Soto - maru Y., Kono T. (2009). Deletion of Gtl2, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Hum. Mol. Genet., 18: 1879-1888.
  53. Tamaru H., Selker E.U. (2001). Ahistone H3 methylotransferase controls DNAmethylation in Neurospora crassa. Nature, 414: 277-283.
  54. Torres - Padilla M.E., Parfitt D.E., Kouzarides T., Zernicka - Goetz M. (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445: 214-218.
  55. Vermeiden J.P., Bernardus R.E. (2013). Are imprinting disorders more prevalent after human in vitro fertilization or intracytoplasmic sperm injection? Fertil. Steril., 99: 642-651.
  56. de Waal E.,Yamazaki Y., Ingale P., Bartolomei M.S.,Yanagimachi R., Mc Car rey J.R. (2012). Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum. Mol. Genet., 21: 4460-4472.
  57. Waddington C.H. (1942). The epigenotype. Endeavour, 1: 18-20.
  58. Xu F., Mao C., Ding Y., Rui C., Wu L., Shi A., Zhang H., Zhang L., Xu Z. (2010). Molecular and enzymatic profiles of mammalian DNAmethyltransferases: structures and targets for drugs. Curr. Med. Chem., 17: 4052-4071.
  59. Zamudio N.M., Chong S., O ’ Bryan M.K. (2008). Epigenetic regulation in male germ cells. Reproduction, 136: 131-146.
  60. Zhou J., Chehab R., Tkalcevic J., Naylor M.J., Harris J., Wilson T.J., Tsao S., Tel- lis I., Zavarsek S., Xu D., Lapinskas E.J., Visvader J., Lindeman G.J., Thomas R., Ormandy C.J., Hertzog P.J., Kola I., Pritchard M.A. (2005). Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J., 24: 635-644.7.
DOI: https://doi.org/10.2478/aoas-2013-0044 | Journal eISSN: 2300-8733 | Journal ISSN: 1642-3402
Language: English
Page range: 675 - 685
Published on: Oct 20, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Joanna Romanek, published by National Research Institute of Animal Production
This work is licensed under the Creative Commons License.