References
- 1. Farhud DD. Impact of lifestyle on health, Iran I Public Health. 2015;44(11):1442-1444.
- 2. Wilding S, Conner M, et al. Using the question-behavior effect to change multiple health behaviors: an exploratory randomized controlled trial, Journal of Experimental Social Psychology. 2019;81:53-60.
- 3. Sygit KM, Sygyt M, et al. Physical activity as an important element in organizing and managing the lifestyle of populations in urban and rural environments, Ann Agric Environ Med. 2019;26(1):8-12.
- 4. Pinto Pereira SM, Li L, et al. Lifetime risk factors for leisure-time physical inactivity in mid-adulthood, Preventive Medicine Reports. 2018;11:23-30.
- 5. Guthold R, Stevens AG, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1,9 million participants, Lancet Glob Health. 2018;6:e1077-86.10.1016/S2214-109X(18)30357-7
- 6. Wing RR, Goldstein MG, et al. Lifestyle changes related to obesity, eating behavior, and physical activity, Diabetes Care. 2001;24:117-123.
- 7. Thivel D, Trembley A, et al. Physical activity, inactivity, and sedentary behaviors: definitions and implications in occupational health, Frontiers in Public Health. 2018;6(288).10.3389/fpubh.2018.00288618281330345266
- 8. World Health Organization – Global report on diabetes, WHO Press, Geneva; 2016:1-87.
- 9. World Health Organization – Classification of diabetes mellitus, WHO Press, Genev;, 2016:1-87.
- 10. Guasch-Ferre′ M, Bullo′ M, et al. A Risk Score to Predict Type 2 Diabetes Mellitus in an Elderly Spanish Mediterranean Population at High Cardiovascular Risk – PLoS ONE. 2012;7(3):e33437.10.1371/journal.pone.0033437330772722442692
- 11. Selph S, Dana T, Blazina I, Bougatsos C, Patel H, Chou R. Screening for type 2 diabetes mellitus: a systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2015;162:765-776.
- 12. Ali MK, Siegel KR, Chandrasekar E, et al. Disease control priorities (Cardiovascular, Respiratory and Related Disorders), 3rd edition, vol. 5, World Bank, Washington DC/USA; 2017.
- 13. American Diabetes Association 2 - Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care. 2018;41:S13-s27.10.2337/dc18-S00229222373
- 14. Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26:725-731.10.2337/diacare.26.3.72512610029
- 15. Schwarz PE, Li J, Lindstrom J, Tuomilehto J. - Tools for predicting the risk of type 2 diabetes in daily practice. Horm. Metab. Res. 2009;41:86-97.
- 16. Saaristo L, Peltonen M, Lindstrom J, Saarikoski L, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab. Vasc. Dis. Res. 2005;2:67-72.
- 17. Schwarz PE, Li J, Reimann M, Schutte AE, et al. The Finnish Diabetes Risk Score is associated with insulin resistance and progression towards type 2 diabetes. J. Clin. Endocrinol. Metab. 2009;94:920-926.
- 18. Zhang L, Zhang Z, Zhang Y, Hu G, Chen L. Evaluation of Finnish Diabetes Risk Score in screening undiagnosed diabetes and prediabetes among U.S. adults by gender and race: NHANES 1999-2010. PloS One. 2014;9.10.1371/journal.pone.0097865403112224852786
- 19. Restian A. Stilul de viaţă ca factor pathogen, Practica Medicală. 2010;2(18):65-70.
- 20. Yanping L, An P, et al. The impact of healthy lifestyle factors on life expactancies in the US population, Circulation. 2018;138(4):345-355.
- 21. Sharps M, Robinson E. Encouraging children to eat more fruit and vegetables: health vs. descriptive social norm-based messages, Appetite. 2016;100:18-25.
- 22. Jannasch F, Kroger J, et al. Generalizability of a diabetes-associated country-specific exploratory dietary pattern is feasible across European populations, J Nutr. 2019;149:1047-1055.
- 23. Jannasch F, Schultze M, et al. Dietary patterns and type 2 diabetes: a systematic literature review and metanalysis of prospective studies, J Nutr. 2017;147:1174-82.
- 24. Franciosi M, De Berardis G, Rossi MCE, Sacco M, at al. Use of the Diabetes Risk Score for opportunistic screening of undiagnosed diabetes and impaired glucose tolerance. The IGLOO (Impaired Glucose Tolerance and Long-Term Outcomes Observational) study. Diabetes Care. 2015;28(5):1187-1194.10.2337/diacare.28.5.118715855587
- 25. Balkau B, Lange C, Fezeu L, Tichet J, et al. Predicting diabetes: Clinical, biological, and genetic approaches. Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care. 2008;31(10):2056-2061.10.2337/dc08-0368255165418689695
- 26. Cameron AJ, Magliano DJ, Zimmet PZ, Welborn TA, et al. - The metabolic syndrome as a tool for predicting future diabetes: the AusDiab study. J Intern Med. 2008;264:177-186.10.1111/j.1365-2796.2008.01935.x18298479
- 27. Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contribution of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care. 2006;29(5):1130-1139.10.2337/dc05-2179
- 28. Makrilakis K, Liatis S, Grammatikou S, Perrea D, et al. - Validation of the Finnish Diabetes Risk Score (FINDRISC) questionnaire for screening for undiagnosed type 2 diabetes, dysglycaemia and the metabolic syndrome in Greece. Diabetes & Metabolism. 2011:37:144-151.10.1016/j.diabet.2010.09.00621144787
- 29. Tankova T, Chakarova N, Atanassova I, Dakovska L. Evaluation of the Finnish Diabetes Risk Score as a screening tool for impaired fasting glucose, impaired glucose tolerance and undetected diabetes. Diab Research Clin Practice. 2011;92:46-52.10.1016/j.diabres.2010.12.02021242013
- 30. Alssema M, Vistisen D, Heymans MW, et al. The evaluation of screening and early detection strategies for type 2 diabetes and impaired glucose tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia. 2011;54:1004-1012.10.1007/s00125-010-1990-721153531
- 31. Al-Shudifat AE, Al-Shadaifat A, et al. Diabetes risk score in a young student population in Jordan: a cross-sectional study – Journal of Diabetes research. 2017;ID:8290710.10.1155/2017/8290710542995928540309
- 32. Kulkarni M, Foraker R, et al. Evaluation of the modified FINDRISC diabetes score to identify individuals at high risk for diabetes among middle-aged white and black ARIC study participants, Diabetes Obes Metab. 2017;19(9):1260-1266.
- 33. Moldobaeva MS, Vinogradova AV, et al. Risk of type 2 diabetes mellitus development in the native population of low- and high-altitude regions of Kyrgyzstan: the Finnish Diabetes Risk Score Questionnaire results, High Alt Med Biol. 2017;18(4):428-435.
- 34. Meijnikman A, Block C, et al. Predicting type 2 diabetes mellitus: a comparison between the FINDRISC score and the metabolic syndrome, Diabetol Metab Syndr. 2018;10:12.
- 35. Bernabe-Ortiz A, Perel P, et al. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population – Primary Care Diabetes. 2018;12:517-525.
- 36. Salinero-Fort MA, Burgos-Lunar C, et al. Performance of the Finnish Diabetes Risk Score and a Simplified Finnish Diabetes Risk Score in a community-based, cross-sectional programme for screening of undiagnosed type 2 diabetes mellitus and dysglycaemia in Madrid, Spain: The SPREDIA-2 Study – PLOS ONE. 2016;11(7):e0158489.10.1371/journal.pone.0158489495620827441722
- 37. Shahim B, Gyberg V, et al. Undetected dysglycemia common in primary care patients treated for hypertension and/or dyslipidaemia: on the need for a screening strategy in clinical practice. A report from EUROASPIRE IV a registry from the EuroObservational Research Programme of the European Society of Cardiology, Cardiovasc Diabetol. 2018;17:21.
- 38. Agarwal G, Guingona MM, et al. Choosing the most appropriate existing type 2 diabetes risk assessment tool for use in the Philippines: a case-control study with an urban Filipino population. BMC Public Health. 2019;19:1169.10.1186/s12889-019-7402-0671287431455247
- 39. Fizelova M, Jauhiainen, et al. Finnish Risk Score is associated with impaired insulin secretion and insulin sensivity, drug-treated hypertension and cardiovascular disease: a follow-up study of the METSIM cohort, PloS ONE. 2016;11(11):e0166584.10.1371/journal.pone.0166584511285827851812
- 40. Gilis-Januszewska A, Lindstrom J, et al. Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes using lifestyle, physical activity and nutritional intervention (DE-PLAN) project, BMC Public Health. 2017;17:198.