Have a personal or library account? Click to login
On Powers, Roots and Moore–Penrose Inverses of Matrices Via Generalized Fibonacci Numbers Cover

On Powers, Roots and Moore–Penrose Inverses of Matrices Via Generalized Fibonacci Numbers

Open Access
|Feb 2026

References

  1. A. Ben-Israel and T.N.E. Greville, Generalized Inverses. Theory and Applications, Springer-Verlag, New York, 2003.
  2. P. Catarino, H. Campos, and P. Vasco, On the Mersenne sequence, Ann. Math. Inform. 46 (2016), 37–53.
  3. T. Goy, On new identities for Mersenne numbers, Appl. Math. E-Notes 18 (2018), 100–105.
  4. F.A. Graybill, Matrices with Applications in Statistics, Wadsworth Advanced Books and Software, Belmont, CA, 1983.
  5. C.-H. Guo and N.J. Higham, A Schur-Newton method for the matrix pth root and its inverse, SIAM J. Matrix Anal. Appl. 28 (2006), no. 3, 788–804.
  6. N.J. Higham and L. Lin, A Schur-Padé algorithm for fractional powers of a matrix, SIAM J. Matrix Anal. Appl. 32 (2011), no. 3, 1056–1078.
  7. N.J. Higham and L. Lin, On pth roots of stochastic matrices, Linear Algebra Appl. 435 (2011), no. 3, 448–463.
  8. D. Kalman and R. Mena, The Fibonacci numbers-exposed, Math. Mag. 76 (2003), no. 3, 167–181.
  9. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
  10. H. Özdemir, S. Karakaya, and T. Petik, Notes on generalized Fibonacci numbers and matrices, Honam Math. J. 44 (2022), no. 4, 473–484.
  11. P.J. Psarrakos, On the mth roots of a complex matrix, Electron. J. Linear Algebra 9 (2002), 32–41.
  12. C.R. Rao and S.K. Mitra, Generalized inverse of a matrix and its applications, in: L.M. Le Cam et al. (eds.), Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Vol. I: Theory of Statistics, University of California Press, Berkeley, CA, 1972, pp. 601–620.
  13. P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, New York, 2000.
  14. Z. Şiar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (2013), no. 3, 211–222.
  15. M.I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl. 24 (2003), no. 4, 971–989.
  16. S. Vajda, Fibonacci & Lucas Numbers, and the Golden Section. Theory and Applications, Ellis Horwood Ltd., Chichester, 1989.
  17. F.V. Waugh and M.E. Abel, On fractional powers of a matrix, J. Amer. Statist. Assoc. 62 (1967), no. 319, 1018–1021.
DOI: https://doi.org/10.2478/amsil-2026-0002 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: Aug 19, 2025
|
Accepted on: Feb 1, 2026
|
Published on: Feb 19, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2026 Sinan Karakaya, Halim Özdemir, Ahmet Yaşar Özban, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT