The connective exclusive or plays an important role in computer programming especially in many encryption algorithms (see e.g. [9], [14], [15]), neural networks ([7], [13]), Quantum Computing ([10], [12]) or other fields ([4], [5], [16], [17]). The authors of [2] and [3] introduced an autonomous definition of the fuzzy Xor connective, which is independent of the other connectives. In the earlier literature we can find a fuzzy Xor operation as a composition of the fuzzy negation, and triangular conorms and norms (see [6], [8], [11], [13]).
In this paper we show what conditions must be met by the fuzzy Xor to be used for cryptographic purposes. We also provide new constructions of fuzzy Xor based on the composition of fuzzy implications and other fuzzy connectives.
In this article we use the notation
First, we recall definitions of some fuzzy connectives.
A t-norm is a function T : [0, 1]2 → [0, 1] satisfying
- (T1)
T(x, y) = T(y, x), x, y ∈ [0, 1];
- (T2)
T(x, T(y, z)) = T(T(x, y), z), x, y, z ∈ [0, 1];
- (T3)
T(x, z) ≤ T(y, z), x, y, z ∈ [0, 1], x ≤ y;
- (T4)
T(x, 1) = x, x ∈ [0, 1].
A t-conorm is a function S : [0, 1]2 → [0, 1] satisfying
- (S1)
S(x, y) = S(y, x), x, y ∈ [0, 1];
- (S2)
S(x, S(y, z)) = S(S(x, y), z), x, y, z ∈ [0, 1];
- (S3)
S(x, z) ≤ S(y, z), x, y, z ∈ [0, 1], x ≤ y;
- (S4)
S(x, 0) = x, x ∈ [0, 1].
A non-increasing function N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0. A fuzzy negation N is called
strict if it is strictly decreasing and continuous;
strong if it is an involution, i.e., N(N(x)) = x, x ∈ [0, 1].
Given a fuzzy negation N, a value e ∈ (0, 1) such that N(e) = e is said to be an equilibrium point of N. If the equilibrium point of N exists (e.g. when N is continuous), then it is unique.
A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies the following properties:
- (I1)
I(x2, y) ≤ I(x1, y), x1, x2, y ∈ [0, 1], x1 ≤ x2;
- (I2)
I(x, y1) ≤ I(x, y2), x, y1, y2 ∈ [0, 1], y1 ≤ y2;
- (I3)
I(0, 0) = 1;
- (I4)
I(1, 1) = 1;
- (I5)
I(1, 0) = 0.
The natural negation of a fuzzy implication I is defined by NI (x) := I(x, 0), x ∈ [0, 1].
A fuzzy implication can have many properties (see [1]) but we will remind here only those that we will need, so for a fuzzy implication I and a fuzzy negation N we have the following properties:
B. Bedregal, R.H.S. Reiser and G.P. Dimuro in their two works [2], [3] tried to introduce an intrinsic definition of the connective fuzzy exclusive or.
A function E: [0, 1]2 → [0, 1] is called a fuzzy Xor if it satisfies the following properties:
- (E0)
E(0, 0) = E(1, 1) = 0, E(1, 0) = E(0, 1) = 1;
- (E1)
E(x, y) = E(y, x), x, y ∈ [0, 1];
- (E2a)
functions E(0, ・), E(・, 0) are non-decreasing;
- (E2b)
functions E(1, ・), E(・, 1) are non-increasing.
Let E: [0, 1]2 → [0, 1] satisfy (E0) and (E2b). Then NE : [0, 1] → [0, 1] given by
In [2], [3] we can find also the following properties connected with a fuzzy Xor function E:
- (E3)
E(x, x) ≠ 1, x ∈ [0, 1];
- (E4)
E(0, x) = x, x ∈ [0, 1];
- (E5)
E(E(x, y), z) = E(x,E(y, z)), x, y, z ∈ [0, 1];
- (E6)
E(x, x) = 0, x ∈ [0, 1];
- (E7)
E(E(x, y), y) = x, x, y ∈ [0, 1];
- (E9)
NE is a strict fuzzy negation;
- (E10)
NE is a strong fuzzy negation;
- (E13)
E(NE(x), x) = 1, x ∈ [0, 1];
- (E15)
NE(E(x, y)) = E(x,NE(y)), x, y ∈ [0, 1].
In this work we will pay special attention to the property (E7), which is related to encryption. The authors of [3] showed that some of the above properties can be obtained from others (e.g. obvious implications (E6) ⇒ (E3), (E10) ⇒ (E9), (E5) ⇒ (E15)) but they missed that some of them are incompatible.
Let E: [0, 1]2 → [0, 1] satisfy (E13) and there exists an equilibrium point of NE. Then (E3) does not hold.
Let e ∈ (0, 1) be such that NE(e) = e. We have
Let E: [0, 1]2 → [0, 1] satisfy (E7). Then, the following relations hold:
- (i)
We have
Hencex{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {x,1} \right),1} \right) = N_E^2\left( x \right), \;\;\;x \in \left[ {0,1} \right]. andN_E^2\left( 0 \right) = 0 , so from (E2b) we get NE(0) = 1 and NE(1) = 0.N_E^2\left( 1 \right) = 1 Suppose that (E15) holds. Since NE is strong, there exists y0 ∈ (0, 1) such that y0 = NE(y0). Then for x0 := E(1, y0) we have
which gives us a contradiction. Hence (E15) and (E5) do not hold.\matrix{ {0 = {N_E}\left( 1 \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} {N_E}\left( {E\left( {E\left( {1,{y_0}} \right),{y_0}} \right)} \right) = {N_E}\left( {E\left( {{x_0},{y_0}} \right)} \right)} \hfill \cr {\;\;\;\;{\buildrel {\left( {{\rm{E}}15} \right)}\over =} E\left( {{x_0},{N_E}\left( {{y_0}} \right)} \right) = E\left( {{x_0},{y_0}} \right) = E\left( {E\left( {1,{y_0}} \right),{y_0}} \right){\buildrel {\left( {E7} \right)}\over =} 1,} \hfill \cr } - (ii)
We observe that
E\left( {{N_E}\left( x \right),x} \right) = E\left( {E\left( {x,1} \right),x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {E\left( {1,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} 1, \;\;\;x \in \left[ {0,1} \right]. - (iii)
We have
andE\left( {x,x} \right){\buildrel {\left( {{\rm{E}}4} \right)}\over =} E\left( {E\left( {0,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} 0, \;\;\;x \in \left[ {0,1} \right] E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}6} \right)}\over =} E\left( {E\left( {x,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right]. - (iv)
Let f(x) := E(x, 0), x ∈ [0, 1]. We notice that
so since f is non-decreasing, f(x) = x, x ∈ [0, 1].{f^2}\left( x \right) = E\left( {E\left( {x,0} \right),0} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right], - (v)
From (i) and Lemma 2.7 we know that (E3) does not hold, so (E6) does not hold. Hence from (iii) (E4) does not hold.
- (vi)
From (ii) and (v) we obtain that (E3), (E4), (E6) do not hold.
Suppose that (E2a) holds. We have
, so (E4) holds and we obtain the contradiction.E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {x,0} \right){\buildrel {\left( {{\rm{iv}}} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right] - (vii)
We have
, so (E4) holds. From (iii) (E6) (and (E3)) holds. From (vi) (E2b) does not hold.E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {x,0} \right){\buildrel {\left( {{\rm{iv}}} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right] - (viii)
We have
\matrix{ {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {0,0} \right),0} \right) {{\buildrel {\left( {{\rm{E2a}}} \right)}\over \ge }} E\left( {0,0} \right),} \hfill \cr {1{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {1,0} \right),0} \right) {{\buildrel {\left( {{\rm{E2a}}} \right)}\over \le }} E\left( {1,0} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {1,1} \right),1} \right) {{\buildrel {\left( {{\rm{E2b}}} \right)}\over \le }} E\left( {0,1} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over = } E\left( {E\left( {0,1} \right),1} \right) {{\buildrel {\left( {{\rm{E2b}}} \right)}\over \ge }} E\left( {1,1} \right).} \hfill \cr }
Let
- (E1-0)
E(x, 0) = E(0, x), x ∈ [0, 1];
- (E1-1)
E(x, 1) = E(1, x), x ∈ [0, 1].
There is no function that satisfies (E0), (E1), (E2a), (E2b) and (E7). Since conditions (E2a) and (E2b) are similar, then among functions satisfying (E7) it is better to look for these which do not satisfy (E1).
Let E: [0, 1]2 → [0, 1] satisfy (E2a), (E2b) and (E7). Then we have the following possibilities:
All of the above possibilities can occur, as illustrated by the following examples.
Let N1, N2 : [0, 1] → [0, 1] be fuzzy negations, N1 be strong, E: [0, 1]2 → [0, 1] be a function given by
if x ≥ N2(y) ≠ 1, then E(x, y) ≥ N2(y) and
\matrix{ {E\left( {E\left( {x,y} \right),y} \right)} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{E\left( {x,y} \right) - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{{N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right) - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{N_1}\left( {{{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}} = x,} \hfill \cr } if x < N2(y) ∨ N2(y) = 1, then E(x, y) = x and
E\left( {E\left( {x,y} \right),y} \right) = E\left( {x,y} \right) = x,
Now, we notice that
Let N1, N2 : [0, 1] → [0, 1] be fuzzy negations, N1 be strong, N2 has not an equilibrium point. For y ∈ (0, 1) let Ay := (0, 1) \ {y, N2(y)} and φy : Ay → Ay be a bijective involution. Let further E: [0, 1]2 → [0, 1] be a function given by
First, we observe that
In [2] and [3] we can find some classes of functions:
In a classical logic we can obtain a Xor in the following way
Let I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. We define the function EI,N : [0, 1]2 → [0, 1] by the formula
We can generalize the above definition in the following way:
Let I1, I2 : [0, 1]2 → [0, 1] be fuzzy implications and N : [0, 1] → [0, 1] be a fuzzy negation. We define the function EI1,I2,N : [0, 1]2 → [0, 1] by the formula
Let S : [0, 1]2 → [0, 1] be a t-conorm, T : [0, 1]2 → [0, 1] be a t-norm, N : [0, 1] → [0, 1] be a fuzzy negation. Let further
Let I1, I2 : [0, 1]2 → [0, 1] be fuzzy implications, N : [0, 1] → [0, 1] be a fuzzy negation. Then for EI1,I2,N given by (2) we have:
(E0), (E2a), (E2b) hold and
if I1 satisfies (R-CP(N)), then (E1) holds, (E7) does not hold; (E4) holds iff (gI1 ◦ N ◦ NI2)(x) = x for x ∈ [0, 1]; if I1, I2 satisfy (R-CP(N)), then NEI1,I2,N ◦ N = NI1 ◦ NI2; if I1, I2 satisfy (R-CP(N)), NI1, NI2, N are strict, then (E9) holds; if I1 satisfies (R-CP(N)) and I2 satisfies (IP), then
- (i)
We observe that for x ∈ [0, 1] we have
so we get (E0), (E2a), (E2b).\matrix{ {{E_{{I_1},{I_2},N}}\left( {x,0} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,0} \right),N\left( {{I_2}\left( {0,x} \right)} \right)} \right)\; = {I_1}\left( {{N_{{I_2}}}\left( x \right),N\left( 1 \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{N_{{I_2}}}\left( x \right),0} \right) = \left( {{N_{{I_1}}} \circ {N_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {0,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {0,x} \right),N\left( {{I_2}\left( {x,0} \right)} \right)\;} \right) = {I_1}\left( {1,N\left( {{N_{{I_2}}}\left( x \right)} \right)} \right)} \hfill \cr {} \hfill & { = \left( {{g_{{I_1}}} \circ N \circ {N_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {x,1} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,1} \right),N\left( {{I_2}\left( {1,x} \right)} \right)} \right) = {I_1}\left( {1,N\left( {{I_2}\left( {1,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = \left( {{g_{{I_1}}} \circ N \circ {g_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {1,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {1,x} \right),N\left( {{I_2}\left( {x,1} \right)} \right)} \right)\; = {I_1}\left( {{I_2}\left( {1,x} \right),N\left( 1 \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{I_2}\left( {1,x} \right),0} \right) = \left( {{N_{{I_1}}} \circ {g_{{I_2}}}} \right)\left( x \right),} \hfill \cr } - (ii)
Assume that I1 satisfies (R-CP(N)). Hence, using the above, we get
\matrix{ {{E_{{I_1},{I_2},N}}\left( {y,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {y,x} \right),N\left( {{I_2}\left( {x,y} \right)} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( {{I_2}\left( {y,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = {E_{{I_1},{I_2},N}}\left( {x,y} \right), \;\;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr } Using Theorem 2.8 we get that (E7) does not hold.
- (iii)
It follows from i.
- (iv)
Assume that I2 satisfies (R-CP(N)). Then we have
\matrix{ {{N_{{E_{{I_1}}}{,_{{I_2}}}{,_N}}}\left( {N\left( x \right)} \right)} \hfill & {{\buildrel {{{ii}}} \over =}\, {N_{{I_1}}}\left( {{I_2}\left( {1,N\left( x \right)} \right)} \right){\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } {N_{{I_1}}}\left( {{I_2}\left( {x,N\left( 1 \right)} \right)} \right)} \hfill \cr {} \hfill & { = {N_{{I_1}}}\left( {{I_2}\left( {x,0} \right)} \right) = \left( {{N_{{I_1}}} \circ {N_{{I_2}}}} \right)\left( x \right), \;\;\;\;x \in \left[ {0,1} \right].} \hfill \cr } - (v)
It follows from iv.
- (vi)
Assume that I2 satisfies (IP). Then
so (E6) holds.\matrix{ {{E_{{I_1},{I_2},N}}\left( {x,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,x} \right),N\left( {{I_2}\left( {x,x} \right)} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{IP}}} \right)}\over =} {I_1}\left( {1,N\left( 1 \right)} \right) = {I_1}\left( {1,0} \right) = 0, \;\;\;\;x \in \left[ {0,1} \right],} \hfill \cr } - (vii)
Let x, y ∈ [0, 1]. From ii we have that EI1,I2,N is symmetric, so we can assume that y ≤ x whence from (IP) for I2 we get I2(y, x) = 1 and
\matrix{ {{E_{{I_1},{I_2},N}}\left( {x,y} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( {{I_2}\left( {y,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( 1 \right)} \right) = {I_1}\left( {{I_2}\left( {x,y} \right),0} \right) = {N_{{I_1}}}\left( {{I_2}\left( {x,y} \right)} \right)} \hfill \cr {} \hfill & { = {N_{{I_1}}}\left( {\min \;\left( {{I_2}\left( {x,y} \right),{I_2}\left( {y,x} \right)} \right)} \right).} \hfill \cr }
Let I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. Assume that EI,N is given by (1). Then (E7) does not hold.
Suppose that (E7) holds. First, observe that NI is strong. Let x ∈ [0, 1]. Using Theorem 2.8 (iv) we have
Next, for x ∈ [0, 1] we notice that
The function
Do exist fuzzy implications I1,I2 and a negation N such that EI1,I2,N satisfies (E7)?
In a classical logic we can obtain a Xor in the following way
Let T : [0, 1]2 → [0, 1] be a t-norm, I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. We define the function ET,I,N : [0, 1]2 → [0, 1] by the formula
Let S : [0, 1]2 → [0, 1] be a t-conorm, T : [0, 1]2 → [0, 1] be a t-norm, N : [0, 1] → [0, 1] be a strong fuzzy negation. We define
Let T : [0, 1]2 → [0, 1] be a t-norm, I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. Then for ET,I,N given by (7) we have:
- (i)
(E0), (E2a), (E2b) hold and
(8) {E_{T,I,N}}\left( {x,0} \right) = \left( {{N_I} \circ N} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], (9) {E_{T,I,N}}\left( {0,x} \right) = {g_I}\left( x \right), \;\;\;x \in \left[ {0,1} \right], (10) {E_{T,I,N}}\left( {x,1} \right) = {N_I}\left( x \right), \;\;\;x \in \left[ {0,1} \right], (11) where gI (x) := I(1, x) for x ∈ [0, 1];{E_{T,I,N}}\left( {1,x} \right) = \left( {{g_I} \circ N} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], - (ii)
- (iii)
- (iv)
- (v)
if I satisfies (IP) and N has an equilibrium point, then (E3) does not hold;
- (vi)
(E7) does not hold.
- (i)
We observe that for x ∈ [0, 1] we have
so we get (E0), (E2a), (E2b).\matrix{ {{E_{T,I,N}}\left( {x,0} \right)} \hfill & { = T\left( {I\left( {x,N\left( 0 \right)} \right),I\left( {N\left( x \right),0} \right)} \right) = T\left( {I\left( {x,1} \right),\left( {{N_I} \circ N} \right)\left( x \right)} \right)} \hfill \cr {} \hfill & { = T\left( {1,\left( {{N_I} \circ N} \right)\left( x \right)} \right) = \left( {{N_I} \circ N} \right)\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {0,x} \right)} \hfill & { = T\left( {I\left( {0,N\left( x \right)} \right),I\left( {N\left( 0 \right),x)} \right)} \right) = T\left( {1,I\left( {1,x)} \right)} \right)} \hfill \cr {} \hfill & { = I\left( {1,x} \right) = {g_I}\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {x,1} \right)} \hfill & { = T\left( {I\left( {x,N\left( 1 \right)} \right),I\left( {N\left( x \right),1} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {I\left( {x,0} \right),1} \right) = I\left( {x,0} \right) = {N_I}\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {1,x} \right)} \hfill & { = T\left( {I\left( {1,N\left( x \right)} \right),I\left( {N\left( 1 \right),x} \right)} \right) = T\left( {\left( {{g_I} \circ N} \right)\left( x \right),I\left( {0,x} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {\left( {{g_I} \circ N} \right)\left( x \right),1} \right) = \left( {{g_I} \circ N} \right)\left( x \right),} \hfill \cr } - (ii)
Assume that I satisfies (R-CP(N)) and (L-CP(N)). Hence
\matrix{ {{E_{T,I,N}}\left( {y,x} \right) = T\left( {I\left( {y,N\left( x \right)} \right),I\left( {N\left( y \right),x} \right)} \right)} \hfill \cr {\;{\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( y \right),x} \right)} \right)} \hfill \cr {\;{\buildrel {\left( {{\rm{L - CP}}\left( {\rm{N}} \right)} \right)} \over = } T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( x \right),y} \right)} \right) = {E_{T,I,N}}\left( {x,y} \right), \;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr } - (iii)
It follows from (9).
- (iv)
It follows from (10).
- (v)
Assume that I satisfies (IP) and N has an equilibrium point e ∈ (0, 1). Then
\matrix{ {{E_{T,I,N}}\left( {e,e} \right)} \hfill & { = T\left( {I\left( {e,N\left( e \right)} \right),I\left( {N\left( e \right),e} \right)} \right) = T\left( {I\left( {e,e} \right),I\left( {e,e} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{IP}}} \right)}\over =} T\left( {1,1} \right) = 1, \;\;\;\;x \in \left[ {0,1} \right].} \hfill \cr } - (vi)
Suppose that (E7) holds. From Theorem 2.8 NET,I,N is strong, so from iv NI is strong. From (8) we get
Since NI ◦N is non-decreasing (NI ◦N)(x) = x for x ∈ [0, 1], so N = NI. Let e ∈ (0, 1) be an equilibrium point of NI. Using i we havex{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {x,0} \right),0} \right) {\buildrel {\left( 8 \right)}\over =} {\left( {{N_I} \circ N} \right)^2}\left( x \right), \;\;\;x \in \left[ {0,1} \right]. which gives us a contradiction.\matrix{ {1{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {1,e} \right),e} \right){\buildrel {\left( 9 \right)}\over =} {E_{T,I,N}}\left( {\left( {{g_I} \circ N} \right)\left( e \right),e} \right) = {E_{T,I,N}}\left( {{g_I}\left( e \right),e} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {0,e} \right),e} \right){\buildrel {\left( {11} \right)}\over =} {E_{T,I,N}}\left( {{g_I}\left( e \right),e} \right),} \hfill \cr } ,
In [3, Table 2] we can find classification of fuzzy Xor connectives. Adding new classes of fuzzy Xor we can show that all these classes are different.
| EI,N | ET,I,N | ES,T,N | ET,S,N | |
|---|---|---|---|---|
| EC (x, y) | (IRS, N) | - | - | - |
| E1(x, y) | - | (T, ILK, NC) | (SLK, TM, NC) | (T, SLK, NC) |
| E⊥(x, y) | (I1, N) | (T, I0, N) | - | - |
| E2(x, y) | - | - | (SD, T, ND2) | (T, SD, ND2) |
Suppose that EC = ET,I,N. Using (8)–(11) we have
Hence I = I1. Let x = y ∈ (0, 1). Then I(x,N(y)) = 1 = I(N(x), y) and\matrix{ {\left( {{N_I} \circ N} \right)\left( x \right) = {g_I}\left( x \right) = \left\{ {\matrix{ {0,} & {\;x = 0,} \cr {1,} & {x > 0,} \cr } } \right.} & {{N_I}\left( x \right) = \left( {{g_I} \circ N} \right)\left( x \right) = \left\{ {\matrix{ {0,} \hfill & {x = 1,} \hfill \cr {1,} \hfill & {x < 1.} \hfill \cr } } \right.} \cr } which give us a contradiction.0 = {E_C}\left( {x,y} \right) = {E_{T,I,N}}\left( {x,y} \right) = T\left( {1,1} \right) = 1, Suppose that E1 = EI,N. Using (3)–(6) we have
Hence NI = gI ◦ N is strong negation and\matrix{ {N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {N_I}} \right)\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \cr {\left( {{N_I} \circ {g_I}} \right)\left( x \right) = \left( {{g_I} \circ N \circ {g_I}} \right)\left( x \right) = 1 - x, \;\;\;x \in \left[ {0,1} \right].} \cr } so N = NC.x = N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {g_I} \circ N} \right)\left( x \right) = 1 - N\left( x \right), \;\;\;x \in \left[ {0,1} \right], Suppose that I(x0, y0) = 1 for some x0 > 0, y0 < 1. Then
The left hand side of the above identity is non-increasing in x and non-decreasing in y which is impossible, so I(x0, y0) = 1 only if x0 = 0 or y0 = 1.{g_I}\left( {{N_c}\left( {I\left( {y,x} \right)} \right)} \right)\; = {E_1}\left( {x,y} \right) = \left\{ {\matrix{ {x + y,} \hfill & {x + y \le 1,} \hfill \cr {2 - x - y,} \hfill & {x + y > 1,} \hfill \cr } } \right.\;\;\;x < {x_0},y > {y_0}. Now, we observe that
so I(0.5, 0.5) = 0, whence1 = {E_1}\left( {0.5,0.5} \right) = I\left( {I\left( {0.5,0.5} \right),1 - I\left( {0.5,0.5} \right)} \right), \;\;\;x \in \left[ {0,1} \right], which give us a contradiction.0 < {N_I}\left( {0.5} \right) = I\left( {0.5,0} \right) \le I\left( {0.5,0.5} \right) = 0, Suppose that E2 = EI,N. Using (3)–(6) we have
Hence NI is strong, gI is surjective, so ND2 = NI ◦ gI is surjective, which give us a contradiction.\matrix{ {N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {N_I}} \right)\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \cr {\left( {{N_I} \circ {g_I}} \right)\left( x \right) = \left( {{g_I} \circ N \circ {g_I}} \right)\left( x \right) = {N_{D2}}\left( x \right), \;\;\;x \in \left[ {0,1} \right].} \cr } Suppose that E2 = ET,I,N. Using (8)–(11) we have
Hence NI is surjective, so ND2 = NI is surjective, which give us a contradiction.\matrix{ {\left( {{N_I} \circ N} \right)\left( x \right) = {g_I}\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \hfill \cr {\;\;\;\;\;\;\;\;{N_I}\left( x \right) = \left( {{g_I} \circ N} \right)\left( x \right) = {N_{D2}}\left( x \right), \;\;\;x \in \left[ {0,1} \right].} \hfill \cr }