Have a personal or library account? Click to login
A note on the fuzzy Xor Cover
Open Access
|Nov 2025

Full Article

1.
Introduction

The connective exclusive or plays an important role in computer programming especially in many encryption algorithms (see e.g. [9], [14], [15]), neural networks ([7], [13]), Quantum Computing ([10], [12]) or other fields ([4], [5], [16], [17]). The authors of [2] and [3] introduced an autonomous definition of the fuzzy Xor connective, which is independent of the other connectives. In the earlier literature we can find a fuzzy Xor operation as a composition of the fuzzy negation, and triangular conorms and norms (see [6], [8], [11], [13]).

In this paper we show what conditions must be met by the fuzzy Xor to be used for cryptographic purposes. We also provide new constructions of fuzzy Xor based on the composition of fuzzy implications and other fuzzy connectives.

2.
Fuzzy connectives

In this article we use the notation =property {\buildrel {\left( {property} \right)}\over =} , which means that this equality holds due to the indicated property.

First, we recall definitions of some fuzzy connectives.

Definition 2.1.

A t-norm is a function T : [0, 1]2 → [0, 1] satisfying

  • (T1)

    T(x, y) = T(y, x), x, y ∈ [0, 1];

  • (T2)

    T(x, T(y, z)) = T(T(x, y), z), x, y, z ∈ [0, 1];

  • (T3)

    T(x, z) ≤ T(y, z), x, y, z ∈ [0, 1], xy;

  • (T4)

    T(x, 1) = x, x ∈ [0, 1].

Definition 2.2.

A t-conorm is a function S : [0, 1]2 → [0, 1] satisfying

  • (S1)

    S(x, y) = S(y, x), x, y ∈ [0, 1];

  • (S2)

    S(x, S(y, z)) = S(S(x, y), z), x, y, z ∈ [0, 1];

  • (S3)

    S(x, z) ≤ S(y, z), x, y, z ∈ [0, 1], xy;

  • (S4)

    S(x, 0) = x, x ∈ [0, 1].

Definition 2.3.

A non-increasing function N : [0, 1] → [0, 1] is called a fuzzy negation if N(0) = 1, N(1) = 0. A fuzzy negation N is called

  • strict if it is strictly decreasing and continuous;

  • strong if it is an involution, i.e., N(N(x)) = x, x ∈ [0, 1].

Given a fuzzy negation N, a value e ∈ (0, 1) such that N(e) = e is said to be an equilibrium point of N. If the equilibrium point of N exists (e.g. when N is continuous), then it is unique.

Definition 2.4.

A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies the following properties:

  • (I1)

    I(x2, y) ≤ I(x1, y), x1, x2, y ∈ [0, 1], x1x2;

  • (I2)

    I(x, y1) ≤ I(x, y2), x, y1, y2 ∈ [0, 1], y1y2;

  • (I3)

    I(0, 0) = 1;

  • (I4)

    I(1, 1) = 1;

  • (I5)

    I(1, 0) = 0.

The natural negation of a fuzzy implication I is defined by NI (x) := I(x, 0), x ∈ [0, 1].

A fuzzy implication can have many properties (see [1]) but we will remind here only those that we will need, so for a fuzzy implication I and a fuzzy negation N we have the following properties: (R-CP(N)) Ix,Ny=Iy,Nx,x,y0,1; I\left( {x,N\left( y \right)} \right) = I\left( {y,N\left( x \right)} \right), \;\;\;x,y \in \left[ {0,1} \right]; (L-CP(N)) INx,y=INy,x,x,y0,1; I\left( {N\left( x \right),y} \right) = I\left( {N\left( y \right),x} \right), \;\;\;x,y \in \left[ {0,1} \right]; (NP) I1,x=x,x0,1; I\left( {1,x} \right) = x, \;\;\;x \in \left[ {0,1} \right]; (IP) Ix,x=1,x0,1. I\left( {x,x} \right) = 1, \;\;\;x \in \left[ {0,1} \right].

B. Bedregal, R.H.S. Reiser and G.P. Dimuro in their two works [2], [3] tried to introduce an intrinsic definition of the connective fuzzy exclusive or.

Definition 2.5.

A function E: [0, 1]2 → [0, 1] is called a fuzzy Xor if it satisfies the following properties:

  • (E0)

    E(0, 0) = E(1, 1) = 0, E(1, 0) = E(0, 1) = 1;

  • (E1)

    E(x, y) = E(y, x), x, y ∈ [0, 1];

  • (E2a)

    functions E(0, ・), E(・, 0) are non-decreasing;

  • (E2b)

    functions E(1, ・), E(・, 1) are non-increasing.

Remark 2.6.

Let E: [0, 1]2 → [0, 1] satisfy (E0) and (E2b). Then NE : [0, 1] → [0, 1] given by NEx:=Ex,1,x0,1 {N_E}\left( x \right): = E\left( {x,1} \right), \;\;\;x \in \left[ {0,1} \right] is a fuzzy negation. When E is a fuzzy Xor, then it is called the natural fuzzy negation of the fuzzy Xor E.

In [2], [3] we can find also the following properties connected with a fuzzy Xor function E:

  • (E3)

    E(x, x) ≠ 1, x ∈ [0, 1];

  • (E4)

    E(0, x) = x, x ∈ [0, 1];

  • (E5)

    E(E(x, y), z) = E(x,E(y, z)), x, y, z ∈ [0, 1];

  • (E6)

    E(x, x) = 0, x ∈ [0, 1];

  • (E7)

    E(E(x, y), y) = x, x, y ∈ [0, 1];

  • (E9)

    NE is a strict fuzzy negation;

  • (E10)

    NE is a strong fuzzy negation;

  • (E13)

    E(NE(x), x) = 1, x ∈ [0, 1];

  • (E15)

    NE(E(x, y)) = E(x,NE(y)), x, y ∈ [0, 1].

In this work we will pay special attention to the property (E7), which is related to encryption. The authors of [3] showed that some of the above properties can be obtained from others (e.g. obvious implications (E6) ⇒ (E3), (E10) ⇒ (E9), (E5) ⇒ (E15)) but they missed that some of them are incompatible.

Lemma 2.7.

Let E: [0, 1]2 → [0, 1] satisfy (E13) and there exists an equilibrium point of NE. Then (E3) does not hold.

Proof

Let e ∈ (0, 1) be such that NE(e) = e. We have Ee,e=ENEe,e=1. E\left( {e,e} \right) = E\left( {{N_E}\left( e \right),e} \right) = 1.

Theorem 2.8.

Let E: [0, 1]2 → [0, 1] satisfy (E7). Then, the following relations hold:

Proof

  • (i)

    We have x=E7EEx,1,1=NE2x,x0,1. x{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {x,1} \right),1} \right) = N_E^2\left( x \right), \;\;\;x \in \left[ {0,1} \right]. Hence NE20=0 N_E^2\left( 0 \right) = 0 and NE21=1 N_E^2\left( 1 \right) = 1 , so from (E2b) we get NE(0) = 1 and NE(1) = 0.

    Suppose that (E15) holds. Since NE is strong, there exists y0 ∈ (0, 1) such that y0 = NE(y0). Then for x0 := E(1, y0) we have 0=NE1=E7NEEE1,y0,y0=NEEx0,y0=E15Ex0,NEy0=Ex0,y0=EE1,y0,y0=E71, \matrix{ {0 = {N_E}\left( 1 \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} {N_E}\left( {E\left( {E\left( {1,{y_0}} \right),{y_0}} \right)} \right) = {N_E}\left( {E\left( {{x_0},{y_0}} \right)} \right)} \hfill \cr {\;\;\;\;{\buildrel {\left( {{\rm{E}}15} \right)}\over =} E\left( {{x_0},{N_E}\left( {{y_0}} \right)} \right) = E\left( {{x_0},{y_0}} \right) = E\left( {E\left( {1,{y_0}} \right),{y_0}} \right){\buildrel {\left( {E7} \right)}\over =} 1,} \hfill \cr } which gives us a contradiction. Hence (E15) and (E5) do not hold.

  • (ii)

    We observe that ENEx,x=EEx,1,x=E1EE1,x,x=E71,x0,1. E\left( {{N_E}\left( x \right),x} \right) = E\left( {E\left( {x,1} \right),x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {E\left( {1,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} 1, \;\;\;x \in \left[ {0,1} \right].

  • (iii)

    We have Ex,x=E4EE0,x,x=E70,x0,1 E\left( {x,x} \right){\buildrel {\left( {{\rm{E}}4} \right)}\over =} E\left( {E\left( {0,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} 0, \;\;\;x \in \left[ {0,1} \right] and E0,x=E6EEx,x,x=E7x,x0,1. E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}6} \right)}\over =} E\left( {E\left( {x,x} \right),x} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right].

  • (iv)

    Let f(x) := E(x, 0), x ∈ [0, 1]. We notice that f2x=EEx,0,0=E7x,x0,1, {f^2}\left( x \right) = E\left( {E\left( {x,0} \right),0} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right], so since f is non-decreasing, f(x) = x, x ∈ [0, 1].

  • (v)

    From (i) and Lemma 2.7 we know that (E3) does not hold, so (E6) does not hold. Hence from (iii) (E4) does not hold.

  • (vi)

    From (ii) and (v) we obtain that (E3), (E4), (E6) do not hold.

    Suppose that (E2a) holds. We have E0,x=E1Ex,0=ivx,x0,1 E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {x,0} \right){\buildrel {\left( {{\rm{iv}}} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right] , so (E4) holds and we obtain the contradiction.

  • (vii)

    We have E0,x=E1Ex,0=ivx,x0,1 E\left( {0,x} \right){\buildrel {\left( {{\rm{E}}1} \right)}\over =} E\left( {x,0} \right){\buildrel {\left( {{\rm{iv}}} \right)}\over =} x, \;\;\;x \in \left[ {0,1} \right] , so (E4) holds. From (iii) (E6) (and (E3)) holds. From (vi) (E2b) does not hold.

  • (viii)

    We have 0=E7EE0,0,0E2aE0,0,1=E7EE1,0,0E2aE1,0,0=E7EE1,1,1E2bE0,1,0=E7EE0,1,1E2bE1,1. \matrix{ {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {0,0} \right),0} \right) {{\buildrel {\left( {{\rm{E2a}}} \right)}\over \ge }} E\left( {0,0} \right),} \hfill \cr {1{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {1,0} \right),0} \right) {{\buildrel {\left( {{\rm{E2a}}} \right)}\over \le }} E\left( {1,0} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {1,1} \right),1} \right) {{\buildrel {\left( {{\rm{E2b}}} \right)}\over \le }} E\left( {0,1} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over = } E\left( {E\left( {0,1} \right),1} \right) {{\buildrel {\left( {{\rm{E2b}}} \right)}\over \ge }} E\left( {1,1} \right).} \hfill \cr }

Remark 2.9.

Let

  • (E1-0)

    E(x, 0) = E(0, x), x ∈ [0, 1];

  • (E1-1)

    E(x, 1) = E(1, x), x ∈ [0, 1].

In the previous theorem instead of (E1) we can assume in (ii) that (E1-1) holds, in (vi) and (vii) that (E1-0), (E1-1) hold. Moreover, we have (E2a)∧(E4) ⇒ (E1-0).

Remark 2.10.

There is no function that satisfies (E0), (E1), (E2a), (E2b) and (E7). Since conditions (E2a) and (E2b) are similar, then among functions satisfying (E7) it is better to look for these which do not satisfy (E1).

Remark 2.11.

Let E: [0, 1]2 → [0, 1] satisfy (E2a), (E2b) and (E7). Then we have the following possibilities:

  • E satisfies (E3), (E4), (E6) and does not satisfy (E13).

  • E satisfies (E13) and does not satisfy (E3), (E4), (E6).

  • E does not satisfy (E3), (E4), (E6), (E13).

All of the above possibilities can occur, as illustrated by the following examples.

Example 2.12.

Let N1, N2 : [0, 1] → [0, 1] be fuzzy negations, N1 be strong, E: [0, 1]2 → [0, 1] be a function given by Ex,y=N2y+1N2yN1xN2y1N2y,xN2y1,x,x<N2yN2y=1. E\left( {x,y} \right) = \left\{ {\matrix{ {{N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right),} \hfill & {x \ge {N_2}\left( y \right) \ne 1,} \hfill \cr {x,} \hfill & {x < {N_2}\left( y \right) \vee {N_2}\left( y \right) = 1.} \hfill \cr } } \right. We will show that E satisfies (E2a), (E2b), (E7) and does not satisfy (E3), (E4), (E6). Moreover (E13) holds iff N1 = N2. We have Ex,0=x,x0,1,E0,y=1,N2y=0,0,N2y0, E\left( {x,0} \right) = x, \;\;\;x \in \left[ {0,1} \right], \;\;\;E\left( {0,y} \right) = \left\{ {\matrix{ {1,} \hfill & {{N_2}\left( y \right) = 0,} \hfill \cr {0,} \hfill & {{N_2}\left( y \right) \ne 0,} \hfill \cr } } \right. so (E2a) holds and (E4) does not hold, NEx=Ex,1=N1x,x0,1,E1,y=N2y, y0,1, \matrix{ {{N_E}\left( x \right) = E\left( {x,1} \right) = {N_1}\left( x \right),} \hfill & {x \in \left[ {0,1} \right],} \hfill \cr {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;E\left( {1,y} \right) = {N_2}\left( y \right),} \hfill & {\;y \in \left[ {0,1} \right],} \hfill \cr } so (E2b) holds. Finally, for x, y ∈ [0, 1] we have

  • if xN2(y) ≠ 1, then E(x, y) ≥ N2(y) and EEx,y,y=N2y+1N2yN1Ex,yN2y1N2y=N2y+1N2yN1N2y+1N2yN1xN2y1N2yN2y1N2y=N2y+1N2yN1N1xN2y1N2y=N2y+1N2yxN2y1N2y=x, \matrix{ {E\left( {E\left( {x,y} \right),y} \right)} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{E\left( {x,y} \right) - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{{N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right) - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){N_1}\left( {{N_1}\left( {{{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}}} \right)} \right)} \hfill \cr {} \hfill & { = {N_2}\left( y \right) + \left( {1 - {N_2}\left( y \right)} \right){{x - {N_2}\left( y \right)} \over {1 - {N_2}\left( y \right)}} = x,} \hfill \cr }

  • if x < N2(y) ∨ N2(y) = 1, then E(x, y) = x and EEx,y,y=Ex,y=x, E\left( {E\left( {x,y} \right),y} \right) = E\left( {x,y} \right) = x,

so (E7) holds. From Theorem 2.8 (iii) (E6) and (E3) do not hold.

Now, we notice that EN2y,y=1, E\left( {{N_2}\left( y \right),y} \right) = 1, so (E13) ⇔ N1 = N2.

Example 2.13.

Let N1, N2 : [0, 1] → [0, 1] be fuzzy negations, N1 be strong, N2 has not an equilibrium point. For y ∈ (0, 1) let Ay := (0, 1) \ {y, N2(y)} and φy : AyAy be a bijective involution. Let further E: [0, 1]2 → [0, 1] be a function given by Ex,y=φyx,y0,1,xAy,y,x=0,N2y,x=1,0,x=y0,1,1,x=N2y0,1,x,y=0,x0,1,N1x,y=1,x0,1. E\left( {x,y} \right) = \left\{ {\matrix{ {{\varphi _y}\left( x \right),} \hfill & {y \in \left( {0,1} \right), \;\;\;x \in {A_y},} \hfill \cr {y,} \hfill & {x = 0,} \hfill \cr {{N_2}\left( y \right),} \hfill & {x = 1,} \hfill \cr {0,} \hfill & {x = y \in \left( {0,1} \right),} \hfill \cr {1,} \hfill & {x = {N_2}\left( y \right) \in \left( {0,1} \right),} \hfill \cr {x,} \hfill & {y = 0, \;\;\;x \in \left( {0,1} \right),} \hfill \cr {{N_1}\left( x \right),} \hfill & {y = 1, \;\;\;x \in \left( {0,1} \right).} \hfill \cr } } \right. We will show that E satisfies (E2a), (E2b), (E3), (E4), (E6), (E7) and does not satisfy (E13).

First, we observe that EEx,y,y=Eφyx,y,y0,1,xAy,Ey,y,x=0,EN2y,y,x=1,E0,y,x=y0,1,E1,y,x=N2y0,1,Ex,y,y=0,x0,1,EN1x,y,y=1,x0,1.=φyφyx,y0,1,xAy,0,x=0,1,x=1,y,x=y0,1,=x,x,y0,1,N2y,x=N2y0,1,x,y=0,x0,1,N1N1x,y=1,x0,1. \matrix{ {E\left( {E\left( {x,y} \right),y} \right)} \hfill & { = \left\{ {\matrix{ {E\left( {{\varphi _y}\left( x \right),y} \right),} \hfill & {y \in \left( {0,1} \right), \;\;\;x \in {A_y},} \hfill \cr {E\left( {y,y} \right),} \hfill & {x = 0,} \hfill \cr {E\left( {{N_2}\left( y \right),y} \right),} \hfill & {x = 1,} \hfill \cr {E\left( {0,y} \right),} \hfill & {x = y \in \left( {0,1} \right),} \hfill \cr {E\left( {1,y} \right),} \hfill & {x = {N_2}\left( y \right) \in \left( {0,1} \right),} \hfill \cr {E\left( {x,y} \right),} \hfill & {y = 0, \;\;\;x \in \left( {0,1} \right),} \hfill \cr {E\left( {{N_1}\left( x \right),y} \right),} \hfill & {y = 1, \;\;\;x \in \left( {0,1} \right).} \hfill \cr } } \right.} \hfill \cr {} \hfill & { = \left\{ {\matrix{ {{\varphi _y}\left( {{\varphi _y}\left( x \right)} \right),} \hfill & {y \in \left( {0,1} \right), \;\;\;x \in {A_y},} \hfill \cr {0,} \hfill & {x = 0,} \hfill \cr {1,} \hfill & {x = 1,} \hfill \cr {y,} \hfill & {x = y \in \left( {0,1} \right), \;\;\;\;\;\;\;\; = x, \;\;\;\;\;x,y \in \left[ {0,1} \right],} \hfill \cr {{N_2}\left( y \right),} \hfill & {x = {N_2}\left( y \right) \in \left( {0,1} \right),} \hfill \cr {x,} \hfill & {y = 0, \;\;\;x \in \left( {0,1} \right),} \hfill \cr {{N_1}\left( {{N_1}\left( x \right)} \right),} \hfill & {y = 1, \;\;\;x \in \left( {0,1} \right).} \hfill \cr } } \right.} \hfill \cr } so E satisfies (E7). We have also Ex,0=x,x0,1,E0,y=y,y0,1,Ex,1=N1x,x0,1,E1,y=N2y,y0,1, \matrix{ {E\left( {x,0} \right) = x, \;\;\;x \in \left[ {0,1} \right],} \hfill \cr {E\left( {0,y} \right) = y, \;\;\;y \in \left[ {0,1} \right],} \hfill \cr {E\left( {x,1} \right) = {N_1}\left( x \right), \;\;\;x \in \left[ {0,1} \right],} \hfill \cr {E\left( {1,y} \right) = {N_2}\left( y \right), \;\;\;y \in \left[ {0,1} \right],} \hfill \cr } whence (E2a), (E4), (E2b) hold. From Theorem 2.8 we obtain that (E6), (E3) hold and (E13) does not hold.

3.
Fuzzy Xor generated from the other fuzzy connectives

In [2] and [3] we can find some classes of functions: ES,T,Nx,y=STx,Ny,TNx,y,x,y0,1;ET,S,Nx,y=TSx,y,SNx,Ny,x,y0,1;ES,Tx,y=Sx,yTx,y,x,y0,1; \matrix{ {{E_{S,T,N}}\left( {x,y} \right) = S\left( {T\left( {x,N\left( y \right)} \right),T\left( {N\left( x \right),y} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right];} \hfill \cr {{E_{T,S,N}}\left( {x,y} \right) = T\left( {S\left( {x,y} \right),S\left( {N\left( x \right),N\left( y \right)} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right];} \hfill \cr {{E_{S,T}}\left( {x,y} \right) = S\left( {x,y} \right) - T\left( {x,y} \right), \;\;\;x,y \in \left[ {0,1} \right];} \hfill \cr } where T : [0, 1]2 → [0, 1] is a t-norm, S : [0, 1]2 → [0, 1] is a t-conorm, and N : [0, 1] → [0, 1] is a fuzzy negation. Each of them is a fuzzy Xor satisfying (E4). We would like to present others classes which may not have this property.

3.1.
Fuzzy Xor generated from fuzzy implications and negation

In a classical logic we can obtain a Xor in the following way αβ=αβ¬βα. \alpha \oplus \beta = \left( {\left( {\alpha \Rightarrow \beta } \right) \Rightarrow \neg \left( {\beta \Rightarrow \alpha } \right)} \right). Hence, we can define the following class of functions.

Definition 3.1.

Let I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. We define the function EI,N : [0, 1]2 → [0, 1] by the formula (1) EI,Nx,y=IIx,y,NIy,x,x,y0,1. {E_{I,N}}\left( {x,y} \right) = I\left( {I\left( {x,y} \right),N\left( {I\left( {y,x} \right)} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right].

We can generalize the above definition in the following way:

Definition 3.2.

Let I1, I2 : [0, 1]2 → [0, 1] be fuzzy implications and N : [0, 1] → [0, 1] be a fuzzy negation. We define the function EI1,I2,N : [0, 1]2 → [0, 1] by the formula (2) EI1,I2,Nx,y=I1I2x,y,NI2y,x,x,y0,1. {E_{{I_1},{I_2},N}}\left( {x,y} \right) = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( {{I_2}\left( {y,x} \right)} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right].

Remark 3.3.

Let S : [0, 1]2 → [0, 1] be a t-conorm, T : [0, 1]2 → [0, 1] be a t-norm, N : [0, 1] → [0, 1] be a fuzzy negation. Let further N˜:0,10,1 \tilde N:\left[ {0,1\left] \to \right[0,1} \right] be any strong negation. We define I1x,y:=SN˜x,y,x,y0,1,I2x,y:=N˜Tx,Ny,x,y0,1. \matrix{ {{I_1}\left( {x,y} \right): = S\left( {\tilde N\left( x \right),y} \right), \;\;\;x,y \in \left[ {0,1} \right],} \hfill \cr {{I_2}\left( {x,y} \right): = \tilde N\left( {T\left( {x,N\left( y \right)} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr } Then EI1,I2,N˜x,y=I1I2x,y,N˜I2y,x=SN˜N˜Tx,Ny,N˜N˜Ty,Nx=STx,Ny,TNx,y=ES,T,Nx,y,x,y0,1. \matrix{ {{E_{{I_1},{I_2},\tilde N}}\left( {x,y} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,y} \right),\tilde N\left( {{I_2}\left( {y,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = S\left( {\tilde N\left( {\tilde N\left( {T\left( {x,N\left( y \right)} \right)} \right)} \right),\tilde N\left( {\tilde N\left( {T\left( {y,N\left( x \right)} \right)} \right)} \right)} \right)} \hfill \cr {} \hfill & { = S\left( {T\left( {x,N\left( y \right)} \right),T\left( {N\left( x \right),y} \right)} \right) = {E_{S,T,N}}\left( {x,y} \right), \;\;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr }

Theorem 3.4.

Let I1, I2 : [0, 1]2 → [0, 1] be fuzzy implications, N : [0, 1] → [0, 1] be a fuzzy negation. Then for EI1,I2,N given by (2) we have:

  • (i)

    (E0), (E2a), (E2b) hold and (3) EI1,I2,Nx,0=NI1NI2x,x0,1, {E_{{I_1},{I_2},N}}\left( {x,0} \right) = \left( {{N_{{I_1}}} \circ {N_{{I_2}}}} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], (4) EI1,I2,N0,x=gI1NNI2x,x0,1, {E_{{I_1},{I_2},N}}\left( {0,x} \right) = \left( {{g_{{I_1}}} \circ N \circ {N_{{I_2}}}} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], (5) EI1,I2,Nx,1=gI1NgI2x,x0,1, {E_{{I_1},{I_2},N}}\left( {x,1} \right) = \left( {{g_{{I_1}}} \circ N \circ {g_{{I_2}}}} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], (6) EI1,I2,N1,x=NI1gI2x,x0,1, {E_{{I_1},{I_2},N}}\left( {1,x} \right) = \left( {{N_{{I_1}}} \circ {g_{{I_2}}}} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], where gI1(x) := I1(1, x), gI2(x) := I2(1, x) for x ∈ [0, 1];

  • (ii)

    if I1 satisfies (R-CP(N)), then (E1) holds, (E7) does not hold;

  • (iii)

    (E4) holds iff (gI1NNI2)(x) = x for x ∈ [0, 1];

  • (iv)

    if I1, I2 satisfy (R-CP(N)), then NEI1,I2,NN = NI1NI2;

  • (v)

    if I1, I2 satisfy (R-CP(N)), NI1, NI2, N are strict, then (E9) holds;

  • (vi)

    if I2 satisfies (IP), then (E6) holds;

  • (vii)

    if I1 satisfies (R-CP(N)) and I2 satisfies (IP), then EI1,I2,Nx,y=NI1minI2x,y,I2y,x,x,y0,1. {E_{{I_1},{I_2},N}}\left( {x,y} \right) = {N_{{I_1}}}\left( {\min \;\left( {{I_2}\left( {x,y} \right),{I_2}\left( {y,x} \right)} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right].

Proof

  • (i)

    We observe that for x ∈ [0, 1] we have EI1,I2,Nx,0=I1I2x,0,NI20,x=I1NI2x,N1=I1NI2x,0=NI1NI2x,EI1,I2,N0,x=I1I20,x,NI2x,0=I11,NNI2x=gI1NNI2x,EI1,I2,Nx,1=I1I2x,1,NI21,x=I11,NI21,x=gI1NgI2x,EI1,I2,N1,x=I1I21,x,NI2x,1=I1I21,x,N1=I1I21,x,0=NI1gI2x, \matrix{ {{E_{{I_1},{I_2},N}}\left( {x,0} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,0} \right),N\left( {{I_2}\left( {0,x} \right)} \right)} \right)\; = {I_1}\left( {{N_{{I_2}}}\left( x \right),N\left( 1 \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{N_{{I_2}}}\left( x \right),0} \right) = \left( {{N_{{I_1}}} \circ {N_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {0,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {0,x} \right),N\left( {{I_2}\left( {x,0} \right)} \right)\;} \right) = {I_1}\left( {1,N\left( {{N_{{I_2}}}\left( x \right)} \right)} \right)} \hfill \cr {} \hfill & { = \left( {{g_{{I_1}}} \circ N \circ {N_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {x,1} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,1} \right),N\left( {{I_2}\left( {1,x} \right)} \right)} \right) = {I_1}\left( {1,N\left( {{I_2}\left( {1,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = \left( {{g_{{I_1}}} \circ N \circ {g_{{I_2}}}} \right)\left( x \right),} \hfill \cr {{E_{{I_1},{I_2},N}}\left( {1,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {1,x} \right),N\left( {{I_2}\left( {x,1} \right)} \right)} \right)\; = {I_1}\left( {{I_2}\left( {1,x} \right),N\left( 1 \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{I_2}\left( {1,x} \right),0} \right) = \left( {{N_{{I_1}}} \circ {g_{{I_2}}}} \right)\left( x \right),} \hfill \cr } so we get (E0), (E2a), (E2b).

  • (ii)

    Assume that I1 satisfies (R-CP(N)). Hence, using the above, we get EI1,I2,Ny,x=I1I2y,x,NI2x,y=R-CPNI1I2x,y,NI2y,x=EI1,I2,Nx,y,x,y0,1. \matrix{ {{E_{{I_1},{I_2},N}}\left( {y,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {y,x} \right),N\left( {{I_2}\left( {x,y} \right)} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( {{I_2}\left( {y,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = {E_{{I_1},{I_2},N}}\left( {x,y} \right), \;\;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr }

    Using Theorem 2.8 we get that (E7) does not hold.

  • (iii)

    It follows from i.

  • (iv)

    Assume that I2 satisfies (R-CP(N)). Then we have NEI1,I2,NNx=iiNI1I21,Nx=R-CPNNI1I2x,N1=NI1I2x,0=NI1NI2x,x0,1. \matrix{ {{N_{{E_{{I_1}}}{,_{{I_2}}}{,_N}}}\left( {N\left( x \right)} \right)} \hfill & {{\buildrel {{{ii}}} \over =}\, {N_{{I_1}}}\left( {{I_2}\left( {1,N\left( x \right)} \right)} \right){\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } {N_{{I_1}}}\left( {{I_2}\left( {x,N\left( 1 \right)} \right)} \right)} \hfill \cr {} \hfill & { = {N_{{I_1}}}\left( {{I_2}\left( {x,0} \right)} \right) = \left( {{N_{{I_1}}} \circ {N_{{I_2}}}} \right)\left( x \right), \;\;\;\;x \in \left[ {0,1} \right].} \hfill \cr }

  • (v)

    It follows from iv.

  • (vi)

    Assume that I2 satisfies (IP). Then EI1,I2,Nx,x=I1I2x,x,NI2x,x=IPI11,N1=I11,0=0,x0,1, \matrix{ {{E_{{I_1},{I_2},N}}\left( {x,x} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,x} \right),N\left( {{I_2}\left( {x,x} \right)} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{IP}}} \right)}\over =} {I_1}\left( {1,N\left( 1 \right)} \right) = {I_1}\left( {1,0} \right) = 0, \;\;\;\;x \in \left[ {0,1} \right],} \hfill \cr } so (E6) holds.

  • (vii)

    Let x, y ∈ [0, 1]. From ii we have that EI1,I2,N is symmetric, so we can assume that yx whence from (IP) for I2 we get I2(y, x) = 1 and EI1,I2,Nx,y=I1I2x,y,NI2y,x=I1I2x,y,N1=I1I2x,y,0=NI1I2x,y=NI1minI2x,y,I2y,x. \matrix{ {{E_{{I_1},{I_2},N}}\left( {x,y} \right)} \hfill & { = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( {{I_2}\left( {y,x} \right)} \right)} \right)} \hfill \cr {} \hfill & { = {I_1}\left( {{I_2}\left( {x,y} \right),N\left( 1 \right)} \right) = {I_1}\left( {{I_2}\left( {x,y} \right),0} \right) = {N_{{I_1}}}\left( {{I_2}\left( {x,y} \right)} \right)} \hfill \cr {} \hfill & { = {N_{{I_1}}}\left( {\min \;\left( {{I_2}\left( {x,y} \right),{I_2}\left( {y,x} \right)} \right)} \right).} \hfill \cr }

Lemma 3.5.

Let I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. Assume that EI,N is given by (1). Then (E7) does not hold.

Proof

Suppose that (E7) holds. First, observe that NI is strong. Let x ∈ [0, 1]. Using Theorem 2.8 (iv) we have x=EI,Nx,0=3NINIx, x = {E_{I,N}}\left( {x,0} \right){\buildrel {\left( 3 \right)}\over =} {N_I}\left( {{N_I}\left( x \right)} \right), so NI is strong.

Next, for x ∈ [0, 1] we notice that NEI,Nx=EI,Nx,1=5gINgIx. {N_{{E_{I,N}}}}\left( x \right) = {E_{I,N}}\left( {x,1} \right){\buildrel {\left( 5 \right)}\over =} \left( {{g_I} \circ N \circ {g_I}} \right)\left( x \right). Since gI is non-decreasing, NEI,N is a strong fuzzy negation, then gI is a bijection and N=gI1NEI,NgI1 N = g_I^{ - 1} \circ {N_{{E_{I,N}}}} \circ g_I^{ - 1} is strict.

The function gI1NIgINNI g_I^{ - 1} \circ {N_I} \circ {g_I} \circ N \circ {N_I} is a strict fuzzy negation, so it has an equilibrium point e ∈ (0, 1). Hence gINNIe=NIgIe. \left( {{g_I} \circ N \circ {N_I}} \right)\left( e \right) = \left( {{N_I} \circ {g_I}} \right)\left( e \right). Using the previous theorem we get 1=E7EE1,e,e=6ENIgIe,e=EgINNIe,e=4EE0,e,e=E70, \matrix{ {1{\buildrel {\left( {{\rm{E}}7} \right)}\over =} E\left( {E\left( {1,e} \right),e} \right){\buildrel {\left( 6 \right)}\over =} E\left( {\left( {{N_I} \circ {g_I}} \right)\left( e \right),e} \right)} \hfill \cr \;\;\;{ = E\left( {\left( {{g_I} \circ N \circ {N_I}} \right)\left( e \right),e} \right){\buildrel {\left( 4 \right)}\over =} E\left( {E\left( {0,e} \right),e} \right){\buildrel {\left( {{\rm{E}}7} \right)}\over =} 0,} \hfill \cr } which gives us a contradiction.

Problem 3.6.

Do exist fuzzy implications I1,I2 and a negation N such that EI1,I2,N satisfies (E7)?

3.2.
Fuzzy Xor generated from t-norm, fuzzy implication and negation

In a classical logic we can obtain a Xor in the following way αβ=α¬β¬αβ. \alpha \oplus \beta = \left( {\left( {\alpha \Rightarrow \neg \beta } \right) \wedge \left( {\neg \alpha \Rightarrow \beta } \right)} \right). Hence, we can define the following class of functions.

Definition 3.7.

Let T : [0, 1]2 → [0, 1] be a t-norm, I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. We define the function ET,I,N : [0, 1]2 → [0, 1] by the formula (7) ET,I,Nx,y=TIx,Ny,INx,y,x,y0,1. {E_{T,I,N}}\left( {x,y} \right) = T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( x \right),y} \right)} \right), \;\;\;x,y \in \left[ {0,1} \right].

Remark 3.8.

Let S : [0, 1]2 → [0, 1] be a t-conorm, T : [0, 1]2 → [0, 1] be a t-norm, N : [0, 1] → [0, 1] be a strong fuzzy negation. We define Ix,y:=SNx,y,x,y0,1. I\left( {x,y} \right): = S\left( {N\left( x \right),y} \right), \;\;\;x,y \in \left[ {0,1} \right]. Then ET,I,Nx,y=TIx,Ny,INx,y=TSNx,Ny,SN2x,y=TSNx,Ny,Sx,y=ET,S,Nx,y,x,y0,1. \matrix{ {{E_{T,I,N}}\left( {x,y} \right)} \hfill & { = T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( x \right),y} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {S\left( {N\left( x \right),N\left( y \right)} \right),S\left( {{N^2}\left( x \right),y} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {S\left( {N\left( x \right),N\left( y \right)} \right),S\left( {x,y} \right)} \right) = {E_{T,S,N}}\left( {x,y} \right), \;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr }

Theorem 3.9.

Let T : [0, 1]2 → [0, 1] be a t-norm, I : [0, 1]2 → [0, 1] be a fuzzy implication, N : [0, 1] → [0, 1] be a fuzzy negation. Then for ET,I,N given by (7) we have:

  • (i)

    (E0), (E2a), (E2b) hold and (8) ET,I,Nx,0=NINx,x0,1, {E_{T,I,N}}\left( {x,0} \right) = \left( {{N_I} \circ N} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], (9) ET,I,N0,x=gIx,x0,1, {E_{T,I,N}}\left( {0,x} \right) = {g_I}\left( x \right), \;\;\;x \in \left[ {0,1} \right], (10) ET,I,Nx,1=NIx,x0,1, {E_{T,I,N}}\left( {x,1} \right) = {N_I}\left( x \right), \;\;\;x \in \left[ {0,1} \right], (11) ET,I,N1,x=gINx,x0,1, {E_{T,I,N}}\left( {1,x} \right) = \left( {{g_I} \circ N} \right)\left( x \right), \;\;\;x \in \left[ {0,1} \right], where gI (x) := I(1, x) for x ∈ [0, 1];

  • (ii)

    if I satisfies (R-CP(N)) and (L-CP(N)), then (E1) holds;

  • (iii)

    I satisfies (NP) iff (E4) holds;

  • (iv)

    NI is strict (strong) iff (E9) ((E10)) holds;

  • (v)

    if I satisfies (IP) and N has an equilibrium point, then (E3) does not hold;

  • (vi)

    (E7) does not hold.

Proof

  • (i)

    We observe that for x ∈ [0, 1] we have ET,I,Nx,0=TIx,N0,INx,0=TIx,1,NINx=T1,NINx=NINx,ET,I,N0,x=TI0,Nx,IN0,x)=T1,I1,x)=I1,x=gIx,ET,I,Nx,1=TIx,N1,INx,1=TIx,0,1=Ix,0=NIx,ET,I,N1,x=TI1,Nx,IN1,x=TgINx,I0,x=TgINx,1=gINx, \matrix{ {{E_{T,I,N}}\left( {x,0} \right)} \hfill & { = T\left( {I\left( {x,N\left( 0 \right)} \right),I\left( {N\left( x \right),0} \right)} \right) = T\left( {I\left( {x,1} \right),\left( {{N_I} \circ N} \right)\left( x \right)} \right)} \hfill \cr {} \hfill & { = T\left( {1,\left( {{N_I} \circ N} \right)\left( x \right)} \right) = \left( {{N_I} \circ N} \right)\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {0,x} \right)} \hfill & { = T\left( {I\left( {0,N\left( x \right)} \right),I\left( {N\left( 0 \right),x)} \right)} \right) = T\left( {1,I\left( {1,x)} \right)} \right)} \hfill \cr {} \hfill & { = I\left( {1,x} \right) = {g_I}\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {x,1} \right)} \hfill & { = T\left( {I\left( {x,N\left( 1 \right)} \right),I\left( {N\left( x \right),1} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {I\left( {x,0} \right),1} \right) = I\left( {x,0} \right) = {N_I}\left( x \right),} \hfill \cr {{E_{T,I,N}}\left( {1,x} \right)} \hfill & { = T\left( {I\left( {1,N\left( x \right)} \right),I\left( {N\left( 1 \right),x} \right)} \right) = T\left( {\left( {{g_I} \circ N} \right)\left( x \right),I\left( {0,x} \right)} \right)} \hfill \cr {} \hfill & { = T\left( {\left( {{g_I} \circ N} \right)\left( x \right),1} \right) = \left( {{g_I} \circ N} \right)\left( x \right),} \hfill \cr } so we get (E0), (E2a), (E2b).

  • (ii)

    Assume that I satisfies (R-CP(N)) and (L-CP(N)). Hence ET,I,Ny,x=TIy,Nx,INy,x=R-CPNTIx,Ny,INy,x=L-CPNTIx,Ny,INx,y=ET,I,Nx,y,x,y0,1. \matrix{ {{E_{T,I,N}}\left( {y,x} \right) = T\left( {I\left( {y,N\left( x \right)} \right),I\left( {N\left( y \right),x} \right)} \right)} \hfill \cr {\;{\buildrel {\left( {{\rm{R - CP}}\left( {\rm{N}} \right)} \right)} \over = } T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( y \right),x} \right)} \right)} \hfill \cr {\;{\buildrel {\left( {{\rm{L - CP}}\left( {\rm{N}} \right)} \right)} \over = } T\left( {I\left( {x,N\left( y \right)} \right),I\left( {N\left( x \right),y} \right)} \right) = {E_{T,I,N}}\left( {x,y} \right), \;\;\;x,y \in \left[ {0,1} \right].} \hfill \cr }

  • (iii)

    It follows from (9).

  • (iv)

    It follows from (10).

  • (v)

    Assume that I satisfies (IP) and N has an equilibrium point e ∈ (0, 1). Then ET,I,Ne,e=TIe,Ne,INe,e=TIe,e,Ie,e=IPT1,1=1,x0,1. \matrix{ {{E_{T,I,N}}\left( {e,e} \right)} \hfill & { = T\left( {I\left( {e,N\left( e \right)} \right),I\left( {N\left( e \right),e} \right)} \right) = T\left( {I\left( {e,e} \right),I\left( {e,e} \right)} \right)} \hfill \cr {} \hfill & {{\buildrel {\left( {{\rm{IP}}} \right)}\over =} T\left( {1,1} \right) = 1, \;\;\;\;x \in \left[ {0,1} \right].} \hfill \cr }

  • (vi)

    Suppose that (E7) holds. From Theorem 2.8 NET,I,N is strong, so from iv NI is strong. From (8) we get x=E7ET,I,NET,I,Nx,0,0=8NIN2x,x0,1. x{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {x,0} \right),0} \right) {\buildrel {\left( 8 \right)}\over =} {\left( {{N_I} \circ N} \right)^2}\left( x \right), \;\;\;x \in \left[ {0,1} \right]. Since NIN is non-decreasing (NIN)(x) = x for x ∈ [0, 1], so N = NI. Let e ∈ (0, 1) be an equilibrium point of NI. Using i we have 1=E7ET,I,NET,I,N1,e,e=9ET,I,NgINe,e=ET,I,NgIe,e,0=E7ET,I,NET,I,N0,e,e=11ET,I,NgIe,e, \matrix{ {1{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {1,e} \right),e} \right){\buildrel {\left( 9 \right)}\over =} {E_{T,I,N}}\left( {\left( {{g_I} \circ N} \right)\left( e \right),e} \right) = {E_{T,I,N}}\left( {{g_I}\left( e \right),e} \right),} \hfill \cr {0{\buildrel {\left( {{\rm{E}}7} \right)}\over =} {E_{T,I,N}}\left( {{E_{T,I,N}}\left( {0,e} \right),e} \right){\buildrel {\left( {11} \right)}\over =} {E_{T,I,N}}\left( {{g_I}\left( e \right),e} \right),} \hfill \cr } , which gives us a contradiction.

4.
Examples

In [3, Table 2] we can find classification of fuzzy Xor connectives. Adding new classes of fuzzy Xor we can show that all these classes are different.

EI,NET,I,NES,T,NET,S,N
EC (x, y)(IRS, N)---
E1(x, y)-(T, ILK, NC)(SLK, TM, NC)(T, SLK, NC)
E(x, y)(I1, N)(T, I0, N)--
E2(x, y)--(SD, T, ND2)(T, SD, ND2)
where N is an arbitrary fuzzy negation, T is an arbitrary t-norm, ECx,y=0,x=y,1,xy,E1x,y=x+y,x+y1,2xy,x+y>1,Ex,y=0,xy=1,1,xy1,E2x,y=0,x=y=1,maxx,y,x=0y=0,1,otherwise,IRSx,y=0,x>y,1,xy,ILKx,y=1x+y,x>y,1,xy,I1x,y=0,x=1y=0,1,x<1y>0,I0x,y=0,x>0y<1,1,x=0y=1,SLKx,y=min1,x+y,x,y0,1,SDx,y=maxx,y,x=0y=0,1,x>0y>0,TMx,y=minx,y,x,y0,1,NCx=1x,x0,1,ND2x=0,x=1,1,x<1. \matrix{ {\matrix{ {{E_C}\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {\;x = y,} \hfill \cr {1,} \hfill & {\;x \ne y,} \hfill \cr } } \right.} \hfill & {{E_1}\left( {x,y} \right) = \left\{ {\matrix{ {x + y,} \hfill & {x + y \le 1,} \hfill \cr {2 - x - y,} \hfill & {x + y > 1,} \hfill \cr } } \right.} \hfill \cr {{E_ \bot }\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {\left| {x - y} \right| = 1,} \hfill \cr {1,} \hfill & {\left| {x - y} \right| \ne 1,} \hfill \cr } } \right.} \hfill & {{E_2}\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {x = y = 1,} \hfill \cr {{\rm{max\;}}\left( {x,y} \right),} \hfill & {x = 0 \vee y = 0,} \hfill \cr {1,} \hfill & {{\rm{otherwise}},} \hfill \cr } } \right.} \hfill \cr {{I_{RS}}\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {\;x > y,} \hfill \cr {1,} \hfill & {\;x \le y,} \hfill \cr } } \right.} \hfill & {{I_{LK}}\left( {x,y} \right) = \left\{ {\matrix{ {1 - x + y,} \hfill & {x > y,} \hfill \cr {1,} \hfill & {x \le y,} \hfill \cr } } \right.} \hfill \cr {{I_1}\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {\;x = 1 \wedge y = 0,} \hfill \cr {1,} \hfill & {\;x < 1 \vee y > 0,} \hfill \cr } } \right.} \hfill & {{I_0}\left( {x,y} \right) = \left\{ {\matrix{ {0,} \hfill & {x > 0 \wedge y < 1,} \hfill \cr {1,} \hfill & {x = 0 \vee y = 1,} \hfill \cr } } \right.} \hfill \cr } } \cr {{S_{LK}}\left( {x,y} \right) = {\rm{min\;}}\left( {1,x + y} \right), \;\;\;\;x,y \in \left[ {0,1} \right],} \cr {{S_D}\left( {x,y} \right) = \left\{ {\matrix{ {{\rm{max\;}}\left( {x,y} \right),} \hfill & {x = 0 \vee y = 0,} \hfill \cr {1,} \hfill & {x > 0 \wedge y > 0,} \hfill \cr } } \right.} \cr {{T_M}\left( {x,y} \right) = {\rm{\;min\;}}\left( {x,y} \right), \;\;\;\;x,y \in \left[ {0,1} \right],} \cr {{N_C}\left( x \right) = 1 - x, \;\;\;x \in \left[ {0,1} \right], \;\;\;{N_{D2}}\left( x \right) = \left\{ {\matrix{ {0,} \hfill & {x = 1,} \hfill \cr {1,} \hfill & {x < 1.} \hfill \cr } } \right.} \cr } It is easy to show the form of E if we know the generators, so we show only that the above fuzzy Xors do not belong to some classes. From [3, Table 2] we know that EC and E do not belong to classes ES,T,N, ET,S,N.
  • Suppose that EC = ET,I,N. Using (8)–(11) we have NINx=gIx=0,x=0,1,x>0,NIx=gINx=0,x=1,1,x<1. \matrix{ {\left( {{N_I} \circ N} \right)\left( x \right) = {g_I}\left( x \right) = \left\{ {\matrix{ {0,} & {\;x = 0,} \cr {1,} & {x > 0,} \cr } } \right.} & {{N_I}\left( x \right) = \left( {{g_I} \circ N} \right)\left( x \right) = \left\{ {\matrix{ {0,} \hfill & {x = 1,} \hfill \cr {1,} \hfill & {x < 1.} \hfill \cr } } \right.} \cr } Hence I = I1. Let x = y ∈ (0, 1). Then I(x,N(y)) = 1 = I(N(x), y) and 0=ECx,y=ET,I,Nx,y=T1,1=1, 0 = {E_C}\left( {x,y} \right) = {E_{T,I,N}}\left( {x,y} \right) = T\left( {1,1} \right) = 1, which give us a contradiction.

  • Suppose that E1 = EI,N. Using (3)–(6) we have NI2x=gINNIx=x,x0,1,NIgIx=gINgIx=1x,x0,1. \matrix{ {N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {N_I}} \right)\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \cr {\left( {{N_I} \circ {g_I}} \right)\left( x \right) = \left( {{g_I} \circ N \circ {g_I}} \right)\left( x \right) = 1 - x, \;\;\;x \in \left[ {0,1} \right].} \cr } Hence NI = gIN is strong negation and x=NI2x=gINgINx=1Nx,x0,1, x = N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {g_I} \circ N} \right)\left( x \right) = 1 - N\left( x \right), \;\;\;x \in \left[ {0,1} \right], so N = NC.

    Suppose that I(x0, y0) = 1 for some x0 > 0, y0 < 1. Then gINcIy,x=E1x,y=x+y,x+y1,2xy,x+y>1,x<x0,y>y0. {g_I}\left( {{N_c}\left( {I\left( {y,x} \right)} \right)} \right)\; = {E_1}\left( {x,y} \right) = \left\{ {\matrix{ {x + y,} \hfill & {x + y \le 1,} \hfill \cr {2 - x - y,} \hfill & {x + y > 1,} \hfill \cr } } \right.\;\;\;x < {x_0},y > {y_0}. The left hand side of the above identity is non-increasing in x and non-decreasing in y which is impossible, so I(x0, y0) = 1 only if x0 = 0 or y0 = 1.

    Now, we observe that 1=E10.5,0.5=II0.5,0.5,1I0.5,0.5,x0,1, 1 = {E_1}\left( {0.5,0.5} \right) = I\left( {I\left( {0.5,0.5} \right),1 - I\left( {0.5,0.5} \right)} \right), \;\;\;x \in \left[ {0,1} \right], so I(0.5, 0.5) = 0, whence 0<NI0.5=I0.5,0I0.5,0.5=0, 0 < {N_I}\left( {0.5} \right) = I\left( {0.5,0} \right) \le I\left( {0.5,0.5} \right) = 0, which give us a contradiction.

  • Suppose that E2 = EI,N. Using (3)–(6) we have NI2x=gINNIx=x,x0,1,NIgIx=gINgIx=ND2x,x0,1. \matrix{ {N_I^2\left( x \right) = \left( {{g_I} \circ N \circ {N_I}} \right)\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \cr {\left( {{N_I} \circ {g_I}} \right)\left( x \right) = \left( {{g_I} \circ N \circ {g_I}} \right)\left( x \right) = {N_{D2}}\left( x \right), \;\;\;x \in \left[ {0,1} \right].} \cr } Hence NI is strong, gI is surjective, so ND2 = NIgI is surjective, which give us a contradiction.

    Suppose that E2 = ET,I,N. Using (8)–(11) we have NINx=gIx=x,x0,1,NIx=gINx=ND2x,x0,1. \matrix{ {\left( {{N_I} \circ N} \right)\left( x \right) = {g_I}\left( x \right) = x, \;\;\;x \in \left[ {0,1} \right],} \hfill \cr {\;\;\;\;\;\;\;\;{N_I}\left( x \right) = \left( {{g_I} \circ N} \right)\left( x \right) = {N_{D2}}\left( x \right), \;\;\;x \in \left[ {0,1} \right].} \hfill \cr } Hence NI is surjective, so ND2 = NI is surjective, which give us a contradiction.

DOI: https://doi.org/10.2478/amsil-2025-0018 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: Jul 7, 2025
Accepted on: Oct 26, 2025
Published on: Nov 15, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Radosław Łukasik, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT