Have a personal or library account? Click to login
Generalized Commutative Mersenne and Mersenne–Lucas Quaternion Polynomials Cover

Generalized Commutative Mersenne and Mersenne–Lucas Quaternion Polynomials

Open Access
|Nov 2025

Full Article

1.
Introduction

Let p, q, n be integers. In [6], Horadam introduced a sequence {Wn(W0, W1; p, q)} defined by the second-order linear recurrence relation (1) Wn=pWn1qWn2forn2 \matrix{{{W_n} = p{W_{n - 1}} - q{W_{n - 2}}} & {{\rm{for}}\,\,n \ge 2}} with fixed real numbers W0, W1. For special values of W0, W1, p, q the equation (1) defines the well-known sequences of numbers, for example, the Fibonacci sequence Fn = Wn(0, 1; 1, −1), the Pell sequence Pn = Wn(0, 1; 2, −1) or the Jacobsthal sequence Jn = Wn(0, 1; 1, −2). Other examples of the Horadam sequence are the sequence of Mersenne numbers and the sequence of Lucas-Mersenne numbers.

The Mersenne numbers Mn are defined by the recurrence Mn=3Mn12Mn2forn2 \matrix{{{M_n} = 3{M_{n - 1}} - 2{M_{n - 2}}} & {{\rm{for}}\,\,n \ge 2}} with M0 = 0, M1 = 1 or Mn=2Mn1+1forn1 \matrix{{{M_n} = 2{M_{n - 1}} + 1} & {{\rm{for}}\,\,n \ge 1}} with initial condition M0 = 0. The sequence of Mersenne–Lucas numbers {mn} is defined by the same recurrence mn=3mn12mn2forn2 \matrix{{{m_n} = 3{m_{n - 1}} - 2{m_{n - 2}}} & {{\rm{for}}\,\,n \ge 2}} with m0 = 2, m1 = 3.

The Binet formula of the Mersenne numbers and Mersenne–Lucas numbers has the form Mn=2n1,mn=2n+1, \matrix{{{M_n} = {2^n} - 1,} \cr {{m_n} = {2^n} + 1,}} respectively. Some interesting properties of the Mersenne numbers can be found in [3, 15].

Sequences defined by the second-order linear homogeneous recurrence equation of the form hn(x)=p(x)hn1(x)+q(x)hn2(x), {h_n}(x) = p(x){h_{n - 1}}(x) + q(x){h_{n - 2}}(x), for n ≥ 3 with h1(x) = a and h2(x) = bx are named as Horadam polynomials, see [7, 8]. One of them is the sequence of Mersenne polynomials {Mn(x)}, defined as follows (2) Mn(x)=3xMn1(x)2Mn2(x)forn2 \matrix{{{M_n}(x) = 3x{M_{n - 1}}(x) - 2{M_{n - 2}}(x)} & {{\rm{for}}\,\,n \ge 2}} with M0(x) = 0, M1(x) = 1. Hence, we get M2(x)=3x,M3(x)=9x22,M4(x)=27x312x,M5(x)=81x454x2+4. \matrix{{{M_2}(x) = 3x,} \hfill \cr {{M_3}(x) = 9{x^2} - 2,} \hfill \cr {{M_4}(x) = 27{x^3} - 12x,} \hfill \cr {{M_5}(x) = 81{x^4} - 54{x^2} + 4.} \hfill}

The Mersenne–Lucas polynomials mn(x) are defined by the same recurrence relation mn(x)=3xmn1(x)2mn2(x)forn2 \matrix{{{m_n}(x) = 3x{m_{n - 1}}(x) - 2{m_{n - 2}}(x)} & {{\rm{for}}\,\,n \ge 2}} with m0(x) = 2, m1(x) = 3. Hence, we obtain m2(x)=9x4,m3(x)=27x212x6,m4(x)=81x336x236x+8,m5(x)=243x4108x3162x2+48x+12. \matrix{{{m_2}(x) = 9x - 4,} \hfill \cr {{m_3}(x) = 27{x^2} - 12x - 6,} \hfill \cr {{m_4}(x) = 81{x^3} - 36{x^2} - 36x + 8,} \hfill \cr {{m_5}(x) = 243{x^4} - 108{x^3} - 162{x^2} + 48x + 12.} \hfill} Binet formula for the Mersenne polynomials has the form (3) Mn(x)=λ1n(x)λ2n(x)λ1(x)λ2(x), {M_n}(x) = {{\lambda_1^n(x) - \lambda_2^n(x)} \over {{\lambda_1}(x) - {\lambda_2}(x)}}, where (4) λ1(x)=12(3x+9x28),λ2(x)=12(3x9x28),9x28>0 \matrix{{{\lambda_1}(x) = {1 \over 2}(3x + \sqrt {9{x^2} - 8}),} & {{\lambda_2}(x) = {1 \over 2}(3x - \sqrt {9{x^2} - 8}),} & {9{x^2} - 8 > 0}} are the roots of the characteristic equation λ23xλ+2=0. {\lambda^2} - 3x\lambda + 2 = 0. Binet formula for the Mersenne–Lucas polynomials has the form mn(x)=Aλ1n(x)+Bλ2n(x), {m_n}(x) = A\lambda_1^n(x) + B\lambda_2^n(x), where (5) A=1+33x9x28,B=1+3x39x28. \matrix{{A = 1 + {{3 - 3x} \over {\sqrt {9{x^2} - 8}}},} & {B = 1 + {{3x - 3} \over {\sqrt {9{x^2} - 8}}}.}}

2.
The generalized commutative Mersenne and Mersenne–Lucas quaternions

In 1843, Hamilton ([4]) introduced the set ℍ of quaternions q of the form q=x0+x1i+x2j+x3k, q = {x_0} + {x_1}i + {x_2}j + {x_3}k, where x0, x1, x2, x3 ∈ ℝ and i2=j2=k2=ijk=1,ij=ji=k,jk=kj=i,ki=ik=j. \matrix{{{i^2} = {j^2} = {k^2} = ijk = - 1,} & {ij = - ji = k,} & {jk = - kj = i,} & {ki = - ik = j.}}

In [5], Horadam introduced the concept of Fibonacci and Lucas quaternions. Moreover, Iyer in [11] gave relations between the Fibonacci and Lucas quaternions. Iakin in [9, 10] introduced the concept of a higher-order quaternion, and established some identities for these quaternions.

Non-commutative quaternions and commutative quaternions were generalized and studied recently by Jafari and Yayli, see [12]. Generalized commutative quaternions were introduced by Szynal-Liana and Włoch in [17], where the authors studied generalized commutative quaternions in the special sub-family of quaternions of Fibonacci-type. Some properties of other generalized commutative quaternions can be found in [2, 13].

Let αβc {\mathbb H}_{\alpha \beta}^c be the set of generalized commutative quaternions x of the form x=x0+x1e1+x2e2+x3e3, {\bf{x}} = {x_0} + {x_1}{e_1} + {x_2}{e_2} + {x_3}{e_3}, where x0, x1, x2, x3 ∈ ℝ, quaternionic units e1, e2, e3 satisfy the equalities e12=α,e22=β,e32=αβ,e1e2=e2e1=e3,e2e3=e3e2=βe1ande3e1=e1e3=αe2, \matrix{{\matrix{{e_1^2 = \alpha,} & {e_2^2 = \beta,} & {e_3^2 = \alpha \beta,} \cr}} \cr {\matrix{{{e_1}{e_2} = {e_2}{e_1} = {e_3},} & {{e_2}{e_3} = {e_3}{e_2} = \beta {e_1}} & {{\rm{and}}} & {{e_3}{e_1} = {e_1}{e_3} = \alpha {e_2},} \cr}}} and α, β ∈ ℝ.

Generalized commutative quaternions generalize elliptic quaternions (α < 0, β = 1), parabolic quaternions (α = 0, β = 1), hyperbolic quaternions (α > 0, β = 1), bicomplex numbers (α = −1, β = −1), complex hyperbolic numbers (α = −1, β = 1) and hyperbolic complex numbers (α = 1, β = −1).

Let n ≥ 0 be an integer. The n-th generalized commutative Mersenne quaternion gcn and the n-th generalized commutative Mersenne–Lucas quaternion gc ℳℒn are defined as follows gcMn=Mn+Mn+1e1+Mn+2e2+Mn+3e3,gcMLn=mn+mn+1e1+mn+2e2+mn+3e3. \matrix{{gc{{\cal M}_n} = {M_n} + {M_{n + 1}}{e_1} + {M_{n + 2}}{e_2} + {M_{n + 3}}{e_3},} \cr {gc{\cal M}{{\cal L}_n} = {m_n} + {m_{n + 1}}{e_1} + {m_{n + 2}}{e_2} + {m_{n + 3}}{e_3}.}}

These quaternions are special types of generalized commutative Horadam quaternions defined in [17].

Let n ≥ 0 be an integer and x be a real variable. The n-th generalized commutative Mersenne quaternion polynomial gcn(x) and the n-th generalized commutative Mersenne–Lucas quaternion polynomial gc ℳℒn(x) are defined as follows (6) gcMn(x)=Mn(x)+Mn+1(x)e1+Mn+2(x)e2+Mn+3(x)e3,gcMLn(x)=mn(x)+mn+1(x)e1+mn+2(x)e2+mn+3(x)e3. \matrix{{gc{{\cal M}_n}(x) = {M_n}(x) + {M_{n + 1}}(x){e_1} + {M_{n + 2}}(x){e_2} + {M_{n + 3}}(x){e_3},} \cr {gc{\cal M}{{\cal L}_n}(x) = {m_n}(x) + {m_{n + 1}}(x){e_1} + {m_{n + 2}}(x){e_2} + {m_{n + 3}}(x){e_3}.}} For x = 1, we have gcn(1) = gcn and gc ℳℒn(1) = gc ℳℒn.

Generalized commutative quaternion polynomials of the Fibonacci-type are introduced in [18]. In [19], the authors considered generalized Pauli Fibonacci polynomial quaternions.

3.
Main results

In this section, we give some identities for the generalized commutative Mersenne quaternion polynomials and the generalized commutative Mersenne–Lucas quaternion polynomials. We start with recurrence relations and Binet-type formulas for these quaternion polynomials.

Theorem 1

Let n ≥ 2 be an integer and x be a real variable. Then

  • (i)

    gcn(x) = 3xgcn−1(x) − 2gcn−2(x),

  • (ii)

    gc ℳℒn(x) = 3xgc ℳℒn−1(x) − 2gc ℳℒn−2(x),

where gcM0x=e1+3xe2+9x22e3,gcM1x=1+3xe1+9x22e2+27x312xe3,gcML0x=2+3e1+9x4e2+27x212x6e3,gcML1x=3+9x4e1+27x212x6e2+81x336x236x+8e3. \matrix{{\,\,\,\,gc{{\cal M}_0}\left(x \right) = {e_1} + 3x{e_2} + \left({9{x^2} - 2} \right){e_3},} \hfill \cr {\,\,\,\,gc{{\cal M}_1}\left(x \right) = 1 + 3x{e_1} + \left({9{x^2} - 2} \right){e_2} + \left({27{x^3} - 12x} \right){e_3},} \hfill \cr {gc{\cal M}{{\cal L}_0}\left(x \right) = 2 + 3{e_1} + \left({9x - 4} \right){e_2} + \left({27{x^2} - 12x - 6} \right){e_3},} \hfill \cr {gc{\cal M}{{\cal L}_1}\left(x \right) = 3 + \left({9x - 4} \right){e_1} + \left({27{x^2} - 12x - 6} \right){e_2} + \left({81{x^3} - 36{x^2} - 36x + 8} \right){e_3}.} \hfill}

Proof

For n = 2 we get gcM2(x)=3xgcM1(x)2gc(x)=3x+9x2e1+(27x36x)e2+(81x436x2)e32e16xe2(18x24)e3=3x+(9x22)e1+(27x312x)e2+(81x454x2+4)e3. \matrix{{gc{{\cal M}_2}(x)} \hfill & {= 3xgc{{\cal M}_1}(x) - 2gc(x)} \hfill \cr {} \hfill & {= 3x + 9{x^2}{e_1} + (27{x^3} - 6x){e_2} + (81{x^4} - 36{x^2}){e_3} - 2{e_1} - 6x{e_2} - (18{x^2} - 4){e_3}} \hfill \cr {} \hfill & {= 3x + (9{x^2} - 2){e_1} + (27{x^3} - 12x){e_2} + (81{x^4} - 54{x^2} + 4){e_3}.} \hfill}

Let n ≥ 3. By formulas (6) and (2) we get gcMn(x)=Mn(x)+Mn+1(x)e1+Mn+2(x)e2+Mn+3(x)e3=3xMn1(x)2Mn2(x)+(3xMn(x)2Mn1(x))e1+(3xMn+1(x)2Mn(x))e2+(3xMn+2(x)2Mn+1(x))e3=3x(Mn1(x)+Mn(x)e1+Mn+1(x)e2+Mn+2(x)e3)2(Mn2(x)+Mn1(x)e1+Mn(x)e2+M(x)e)=3xgcMn1(x)2gcMn2(x) \matrix{{gc{{\cal M}_n}(x)} \hfill & {= {M_n}(x) + {M_{n + 1}}(x){e_1} + {M_{n + 2}}(x){e_2} + {M_{n + 3}}(x){e_3}} \hfill \cr {} \hfill & {= 3x{M_{n - 1}}(x) - 2{M_{n - 2}}(x) + (3x{M_n}(x) - 2{M_{n - 1}}(x)){e_1}} \hfill \cr {} \hfill & {\,\,\,\,\, + (3x{M_{n + 1}}(x) - 2{M_n}(x)){e_2} + (3x{M_{n + 2}}(x) - 2{M_{n + 1}}(x)){e_3}} \hfill \cr {} \hfill & {= 3x({M_{n - 1}}(x) + {M_n}(x){e_1} + {M_{n + 1}}(x){e_2} + {M_{n + 2}}(x){e_3})} \hfill \cr {} \hfill & {\,\,\,\, - 2({M_{n - 2}}(x) + {M_{n - 1}}(x){e_1} + {M_n}(x){e_2} + M(x)e)} \hfill \cr {} \hfill & {= 3xgc{{\cal M}_{n - 1}}(x) - 2gc{{\cal M}_{n - 2}}(x)} \hfill} which ends the proof of (i).

The second part can be proved similarly.

Corollary 1

Let n ≥ 2 be an integer. Then

  • (i)

    gcn = 3gcn−1 − 2gcn−2,

  • (ii)

    gc ℳℒn = 3gc ℳℒn−1 − 2gc ℳℒn−2,

where gcM0=e1+3e2+7e3,gcM1=1+3e1+7e2+15e3,gcML0=2+3e1+5e2+9e3,gcML1=3+5e1+9e2+17e3. \matrix{{\,\,\,\,gc{{\cal M}_0} = {e_1} + 3{e_2} + 7{e_3},} \hfill \cr {\,\,\,\,gc{{\cal M}_1} = 1 + 3{e_1} + 7{e_2} + 15{e_3},} \hfill \cr {gc{\cal M}{{\cal L}_0} = 2 + 3{e_1} + 5{e_2} + 9{e_3},} \hfill \cr {gc{\cal M}{{\cal L}_1} = 3 + 5{e_1} + 9{e_2} + 17{e_3}.} \hfill}

Theorem 2

(Binet-type formula for generalized commutative Mersenne quaternion polynomials). Let n ≥ 0 be an integer, x be a real variable and 9x2 − 8 > 0. Then (7) gcMn(x)=λ1n(x)λ1(x)^λ2n(x)λ2(x)^λ1(x)λ2(x), gc{{\cal M}_n}(x) = {{\lambda_1^n(x)\widehat {{\lambda_1}(x)} - \lambda_2^n(x)\widehat {{\lambda_2}(x)}} \over {{\lambda_1}(x) - {\lambda_2}(x)}}, where λ1(x), λ2(x) are given by (4) and (8) λ1(x)^=1+λ1(x)e1+λ12(x)e2+λ13(x)e3,λ2(x)^=1+λ2(x)e1+λ22(x)e2+λ23(x)e3. \matrix{{\widehat {{\lambda_1}(x)} = 1 + {\lambda_1}(x){e_1} + \lambda_1^2(x){e_2} + \lambda_1^3(x){e_3},} \hfill \cr {\widehat {{\lambda_2}(x)} = 1 + {\lambda_2}(x){e_1} + \lambda_2^2(x){e_2} + \lambda_2^3(x){e_3}.} \hfill}

Proof

By (6) and (3) we get gcMn(x)=Mn(x)+Mn+1(x)e1+Mn+2(x)e2+Mn+3(x)e3=λ1n(x)λ2n(x)λ1(x)λ2(x)+λ1n+1(x)λ2n+1(x)λ1(x)λ2(x)e1+λ1n+2(x)λ2n+2(x)λ1(x)λ2(x)e2+λ1n+3(x)λ2n+3(x)λ1(x)λ2(x)e3=λ1n(x)(1+λ1(x)e1+λ12(x)e2+λ13(x)e3)λ1(x)λ2(x)λ2n(x)(1+λ2(x)e1+λ22(x)e2+λ23(x)e3)λ1(x)λ2(x). \matrix{{gc{{\cal M}_n}(x)} \hfill & {= {M_n}(x) + {M_{n + 1}}(x){e_1} + {M_{n + 2}}(x){e_2} + {M_{n + 3}}(x){e_3}} \hfill \cr {} \hfill & {= {{\lambda_1^n(x) - \lambda_2^n(x)} \over {{\lambda_1}(x) - {\lambda_2}(x)}} + {{\lambda_1^{n + 1}(x) - \lambda_2^{n + 1}(x)} \over {{\lambda_1}(x) - {\lambda_2}(x)}}{e_1}} \hfill \cr {} \hfill & {\,\,\,\, + {{\lambda_1^{n + 2}(x) - \lambda_2^{n + 2}(x)} \over {{\lambda_1}(x) - {\lambda_2}(x)}}{e_2} + {{\lambda_1^{n + 3}(x) - \lambda_2^{n + 3}(x)} \over {{\lambda_1}(x) - {\lambda_2}(x)}}{e_3}} \hfill \cr {} \hfill & {= {{\lambda_1^n(x)(1 + {\lambda_1}(x){e_1} + \lambda_1^2(x){e_2} + \lambda_1^3(x){e_3})} \over {{\lambda_1}(x) - {\lambda_2}(x)}}} \hfill \cr {} \hfill & {- {{\lambda_2^n(x)(1 + {\lambda_2}(x){e_1} + \lambda_2^2(x){e_2} + \lambda_2^3(x){e_3})} \over {{\lambda_1}(x) - {\lambda_2}(x)}}.} \hfill} Hence, we get the result.

In the same way, we can prove the following theorem.

Theorem 3

(Binet-type formula for generalized commutative Mersenne–Lucas quaternion polynomials). Let n ≥ 0 be an integer, x be a real variable and 9x2 − 8 > 0. Then gcMLn(x)=Aλ1n(x)λ1(x)^+Bλ2n(x)λ2(x)^, gc{\cal M}{{\cal L}_n}(x) = A\lambda_1^n(x)\widehat {{\lambda_1}(x)} + B\lambda_2^n(x)\widehat {{\lambda_2}(x)}, where A, B, λ1(x), λ2(x), λ1(x)^ \widehat {{\lambda_1}(x)} , λ2(x)^ \widehat {{\lambda_2}(x)} are given by (5), (4), (8), respectively.

Corollary 2

Let n ≥ 0 be an integer. Then gcMn=2n(1+2e1+4e2+8e3)(1+e1+e2+e3),gcMLn=2n(1+2e1+4e2+8e3)+(1+e1+e2+e3). \matrix{{gc{{\cal M}_n} = {2^n}(1 + 2{e_1} + 4{e_2} + 8{e_3}) - (1 + {e_1} + {e_2} + {e_3}),} \cr {gc{\cal M}{{\cal L}_n} = {2^n}(1 + 2{e_1} + 4{e_2} + 8{e_3}) + (1 + {e_1} + {e_2} + {e_3}).}} By simple calculations we have λ1(x)λ2(x)=9x28,λ1(x)+λ2(x)=3x,λ1(x)λ2(x)=2,λ12(x)+λ22(x)=9x24,λ13(x)+λ23(x)=27x318x, \eqalign{& {\lambda_1}(x) - {\lambda_2}(x) = \sqrt {9{x^2} - 8},\,\,\,\,\,{\lambda_1}(x) + {\lambda_2}(x) = 3x,\,\,\,\,\,{\lambda_1}(x) \cdot {\lambda_2}(x) = 2, \cr & \lambda_1^2(x) + \lambda_2^2(x) = 9{x^2} - 4,\,\,\,\,\,\lambda_1^3(x) + \lambda_2^3(x) = 27{x^3} - 18x, \cr} λ1(x)^λ2(x)^=λ2(x)^λ1(x)^=1+λ2(x)e1+λ22(x)e2+λ23(x)e3+λ1(x)e1+λ1(x)λ2(x)α+λ1(x)λ22(x)e3+λ1(x)λ23(x)αe2+λ12(x)e2+λ12(x)λ2(x)e3+λ12(x)λ22(x)β+λ12(x)λ23(x)βe1+λ13(x)e3+λ13(x)λ2(x)αe2+λ13(x)λ22(x)βe1+λ13(x)λ23(x)αβ=1+λ1(x)λ2(x)α+λ12(x)λ22(x)β+λ13(x)λ23(x)αβ+λ2(x)e1+λ1(x)e1+λ12(x)λ23(x)βe1+λ13(x)λ22(x)βe1+λ22(x)e2+λ12(x)e2+λ1(x)λ23(x)αe2+λ13(x)λ2(x)αe2+λ23(x)e3+λ13(x)e3+λ1(x)λ22(x)e3+λ12(x)λ2(x)e3. \matrix{{\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}} \hfill & {= \widehat {{\lambda_2}(x)}\widehat {{\lambda_1}(x)}} \hfill \cr {} \hfill & {= 1 + {\lambda_2}(x){e_1} + \lambda_2^2(x){e_2} + \lambda_2^3(x){e_3}} \hfill \cr {} \hfill & {\,\,\,\,\, + {\lambda_1}(x){e_1} + {\lambda_1}(x){\lambda_2}(x)\alpha + {\lambda_1}(x)\lambda_2^2(x){e_3} + {\lambda_1}(x)\lambda_2^3(x)\alpha {e_2}} \hfill \cr {} \hfill & {\,\,\,\,\, + \lambda_1^2(x){e_2} + \lambda_1^2(x){\lambda_2}(x){e_3} + \lambda_1^2(x)\lambda_2^2(x)\beta + \lambda_1^2(x)\lambda_2^3(x)\beta {e_1}} \hfill \cr {} \hfill & {\,\,\,\,\, + \lambda_1^3(x){e_3} + \lambda_1^3(x){\lambda_2}(x)\alpha {e_2} + \lambda_1^3(x)\lambda_2^2(x)\beta {e_1} + \lambda_1^3(x)\lambda_2^3(x)\alpha \beta} \hfill \cr {} \hfill & {= 1 + {\lambda_1}(x){\lambda_2}(x)\alpha + \lambda_1^2(x)\lambda_2^2(x)\beta + \lambda_1^3(x)\lambda_2^3(x)\alpha \beta} \hfill \cr {} \hfill & {\,\,\,\,\, + {\lambda_2}(x){e_1} + {\lambda_1}(x){e_1} + \lambda_1^2(x)\lambda_2^3(x)\beta {e_1} + \lambda_1^3(x)\lambda_2^2(x)\beta {e_1}} \hfill \cr {} \hfill & {\,\,\,\,\, + \lambda_2^2(x){e_2} + \lambda_1^2(x){e_2} + {\lambda_1}(x)\lambda_2^3(x)\alpha {e_2} + \lambda_1^3(x){\lambda_2}(x)\alpha {e_2}} \hfill \cr {} \hfill & {\,\,\,\,\, + \lambda_2^3(x){e_3} + \lambda_1^3(x){e_3} + {\lambda_1}(x)\lambda_2^2(x){e_3} + \lambda_1^2(x){\lambda_2}(x){e_3}.} \hfill} Hence, we get (9) λ1(x)^λ2(x)^=1+2α+4β+8αβ+(3x+12xβ)e1+(9x24)(1+2α)e2+(27x312x)e3. \widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} = 1 + 2\alpha + 4\beta + 8\alpha \beta + (3x + 12x\beta){e_1} + (9{x^2} - 4)(1 + 2\alpha){e_2} + (27{x^3} - 12x){e_3}.

The next theorems present general bilinear index-reduction formulas for generalized commutative Mersenne quaternion polynomials and generalized commutative Mersenne–Lucas quaternion polynomials.

Theorem 4

Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d. Assume that x is a real variable and 9x2 − 8 > 0. Then gcMa(x)gcMb(x)gcMc(x)gc(x)=[λ1c(x)λ2d(x)+λ2c(x)λ1d(x)λ1a(x)λ2b(x)λ2a(x)λ1b(x)]λ1(x)^λ2(x)^9x28, \eqalign{& gc{{\cal M}_a}(x) \cdot gc{{\cal M}_b}(x) - gc{{\cal M}_c}(x) \cdot gc(x) \cr & \,\,\,\,\,\, = {{[\lambda_1^c(x)\lambda_2^d(x) + \lambda_2^c(x)\lambda_1^d(x) - \lambda_1^a(x)\lambda_2^b(x) - \lambda_2^a(x)\lambda_1^b(x)]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}} \over {9{x^2} - 8}}, \cr} where λ1(x), λ2(x) are given by (4) and λ1(x)^λ2(x)^ \widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} is given by (9).

Proof

By formula (7) we have gcMa(x)gcMb(x)gcMc(x)gcMd(x)=λ1a(x)λ2b(x)λ1(x)^λ2(x)^λ2a(x)λ1b(x)λ2(x)^λ1(x)^9x28+λ1c(x)λ2d(x)λ1(x)^λ2(x)^λ2c(x)λ1d(x)λ2(x)^λ1(x)^9x28=[λ1c(x)λ2d(x)+λ2c(x)λ1d(x)λ1a(x)λ2b(x)λ2a(x)λ1b(x)]λ1(x)^λ2(x)^9x28, \matrix{{gc{{\cal M}_a}(x) \cdot gc{{\cal M}_b}(x) - gc{{\cal M}_c}(x) \cdot gc{{\cal M}_d}(x)} \hfill \cr {= {{- \lambda_1^a(x)\lambda_2^b(x)\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} - \lambda_2^a(x)\lambda_1^b(x)\widehat {{\lambda_2}(x)}\widehat {{\lambda_1}(x)}} \over {9{x^2} - 8}}} \hfill \cr {\,\,\,\,\, + {{- \lambda_1^c(x)\lambda_2^d(x)\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} - \lambda_2^c(x)\lambda_1^d(x)\widehat {{\lambda_2}(x)}\widehat {{\lambda_1}(x)}} \over {9{x^2} - 8}}} \hfill \cr {= {{[\lambda_1^c(x)\lambda_2^d(x) + \lambda_2^c(x)\lambda_1^d(x) - \lambda_1^a(x)\lambda_2^b(x) - \lambda_2^a(x)\lambda_1^b(x)]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}} \over {9{x^2} - 8}},} \hfill} which ends the proof.

Theorem 5

Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d. Assume that x is a real variable and 9x2 − 8 > 0. Then gcMLa(x)gcMLb(x)gcMLc(x)gcMLd(x)=18x179x28(λ1a(x)λ2b(x)+λ2a(x)λ1b(x)λ1c(x)λ2d(x)λ2c(x)λ1d(x))λ1(x)^λ2(x)^, \eqalign{& gc{\cal M}{{\cal L}_a}(x) \cdot gc{\cal M}{{\cal L}_b}(x) - gc{\cal M}{{\cal L}_c}(x) \cdot gc{\cal M}{{\cal L}_d}(x) \cr & = {{18x - 17} \over {9{x^2} - 8}}(\lambda_1^a(x)\lambda_2^b(x) + \lambda_2^a(x)\lambda_1^b(x) - \lambda_1^c(x)\lambda_2^d(x) - \lambda_2^c(x)\lambda_1^d(x))\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}, \cr} where λ1(x), λ2(x) are given by (4) and λ1(x)^λ2(x)^ \widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} is given by (9).

Corollary 3

Let a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0 be integers such that a + b = c + d. Then gcMagcMbgcMcgcMd=(2c+2d2a2b)1^2^,gcMLagcMLbgcMLcgcMLd=(2a+2b2c2d)1^2^, \matrix{\hfill {gc{{\cal M}_a} \cdot gc{{\cal M}_b} - gc{{\cal M}_c} \cdot gc{{\cal M}_d} = ({2^c} + {2^d} - {2^a} - {2^b}){\bf{\hat 1}} \cdot {\bf{\hat 2}},} \cr \hfill {gc{\cal M}{{\cal L}_a} \cdot gc{\cal M}{{\cal L}_b} - gc{\cal M}{{\cal L}_c} \cdot gc{\cal M}{{\cal L}_d} = ({2^a} + {2^b} - {2^c} - {2^d}){\bf{\hat 1}} \cdot {\bf{\hat 2}},}} where 1^=1+e1+e2+e3,2^=1+2e1+4e2+8e3 \matrix{{{\bf{\hat 1}} = 1 + {e_1} + {e_2} + {e_3},} & {{\bf{\hat 2}} = 1 + 2{e_1} + 4{e_2} + 8{e_3}}} and (10) 1^2^=1+2α+4β+8αβ+(3+12β)e1+(5+10α)e2+15e3. {\bf{\hat 1}} \cdot {\bf{\hat 2}} = 1 + 2\alpha + 4\beta + 8\alpha \beta + (3 + 12\beta){e_1} + (5 + 10\alpha){e_2} + 15{e_3}.

It is easily seen that for special values of a, b, c, d, by Theorem 4 and Theorem 5 we get new identities for generalized commutative Mersenne quaternion polynomials and generalized commutative Mersenne–Lucas quaternion polynomials. Assume that λ1(x)^λ2(x)^ \widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)} is given by (9) and 9x2 − 8 > 0.

  • Catalan-type identities for a = n + r, b = nr, c = d = n, r ≥ 0 and nr gcMn+r(x)gcMnr(x)(gcMn(x))2=2n9x282λ1(x)λ2(x)rλ2(x)λ1(x)rλ1(x)^λ2(x)^,gcMLn+r(x)gcMLnr(x)(gcMLn(x))2=2n18x179x28λ1(x)λ2(x)r+λ2(x)λ1(x)r2λ1(x)^λ2(x)^, \matrix{{gc{{\cal M}_{n + r}}(x) \cdot gc{{\cal M}_{n - r}}(x) - {{(gc{{\cal M}_n}(x))}^2} = {{{2^n}} \over {9{x^2} - 8}}\left[ {2 - {{\left({{{{\lambda_1}(x)} \over {{\lambda_2}(x)}}} \right)}^r} - {{\left({{{{\lambda_2}(x)} \over {{\lambda_1}(x)}}} \right)}^r}} \right]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},} \cr {gc{\cal M}{{\cal L}_{n + r}}(x) \cdot gc{\cal M}{{\cal L}_{n - r}}(x) - {{(gc{\cal M}{{\cal L}_n}(x))}^2} = {{{2^n}\left({18x - 17} \right)} \over {9{x^2} - 8}}\left[ {{{\left({{{{\lambda_1}(x)} \over {{\lambda_2}(x)}}} \right)}^r} + {{\left({{{{\lambda_2}(x)} \over {{\lambda_1}(x)}}} \right)}^r} - 2} \right]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},}}

  • Cassini-type identities for a = n + 1, b = n − 1, c = d = n and n ≥ 1 gcMn+1(x)gcMn1(x)(gcMn(x))2=2n9x282λ1(x)λ2(x)λ2(x)λ1(x)λ1(x)^λ2(x)^,gcMLn+1(x)gcMLn1(x)(gcMLn(x))2=2n18x179x28λ1(x)λ2(x)+λ2(x)λ1(x)2λ1(x)^λ2(x)^, \matrix{{gc{{\cal M}_{n + 1}}(x) \cdot gc{{\cal M}_{n - 1}}(x) - {{(gc{{\cal M}_n}(x))}^2} = {{{2^n}} \over {9{x^2} - 8}}\left[ {2 - {{{\lambda_1}(x)} \over {{\lambda_2}(x)}} - {{{\lambda_2}(x)} \over {{\lambda_1}(x)}}} \right]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},} \cr {gc{\cal M}{{\cal L}_{n + 1}}(x) \cdot gc{\cal M}{{\cal L}_{n - 1}}(x) - {{(gc{\cal M}{{\cal L}_n}(x))}^2} = {{{2^n}\left({18x - 17} \right)} \over {9{x^2} - 8}}\left[ {{{{\lambda_1}(x)} \over {{\lambda_2}(x)}} + {{{\lambda_2}(x)} \over {{\lambda_1}(x)}} - 2} \right]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},}}

  • ďOcagne-type identities for a = n, b = m + 1, c = n + 1 and d = m nm gcMn(x)gcMm+1(x)gcMn+1(x)gcMm(x)=[λ1n(x)λ2m(x)λ2n(x)λ1m(x)]λ1(x)^λ2(x)^9x28,gcMLn(x)gcMLm+1(x)gcMLn+1(x)gcMLm(x)=18x179x28(λ2n(x)λ1m(x)λ1n(x)λ2m(x))λ1(x)^λ2(x)^, \matrix{{gc{{\cal M}_n}(x) \cdot gc{{\cal M}_{m + 1}}(x) - gc{{\cal M}_{n + 1}}(x) \cdot gc{{\cal M}_m}(x) = {{[\lambda_1^n(x)\lambda_2^m(x) - \lambda_2^n(x)\lambda_1^m(x)]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}} \over {\sqrt {9{x^2} - 8}}},} \cr {gc{\cal M}{{\cal L}_n}(x) \cdot gc{\cal M}{{\cal L}_{m + 1}}(x) - gc{\cal M}{{\cal L}_{n + 1}}(x) \cdot gc{\cal M}{{\cal L}_m}(x) = {{18x - 17} \over {\sqrt {9{x^2} - 8}}}(\lambda_2^n(x)\lambda_1^m(x) - \lambda_1^n(x)\lambda_2^m(x))\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},}}

  • Vajda-type identities for a = m + p, b = np, c = m, d = n and m ≥ 0, p ≥ 0, np gcMm+p(x)gcMnp(x)gcMm(x)gcMn(x)=λ1m(x)λ2n(x)1λ1(x)λ2(x)p+λ2m(x)λ1n(x)1λ1(x)λ2(x)p9x28λ1(x)^λ2(x)^,gcMLm+p(x)gcMLnp(x)gcMLm(x)gcMLn(x)=18x17λ1m(x)λ2n(x)λ1(x)λ2(x)p1+λ2m(x)λ1n(x)λ2(x)λ1(x)p1λ1(x)^λ2(x)^9x28. \matrix{{gc{{\cal M}_{m + p}}(x) \cdot gc{{\cal M}_{n - p}}(x) - gc{{\cal M}_m}(x) \cdot gc{{\cal M}_n}(x)} \hfill \cr {= {{\left[ {\lambda_1^m(x)\lambda_2^n(x)\left({1 - {{\left({{{{\lambda_1}(x)} \over {{\lambda_2}(x)}}} \right)}^p}} \right) + \lambda_2^m(x)\lambda_1^n(x)\left({1 - {{\left({{{{\lambda_1}(x)} \over {{\lambda_2}(x)}}} \right)}^p}} \right)} \right]} \over {9{x^2} - 8}}\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)},} \hfill \cr {gc{\cal M}{{\cal L}_{m + p}}(x) \cdot gc{\cal M}{{\cal L}_{n - p}}(x) - gc{\cal M}{{\cal L}_m}(x) \cdot gc{\cal M}{{\cal L}_n}(x)} \hfill \cr {= {{\left({18x - 17} \right)\left[ {\lambda_1^m(x)\lambda_2^n(x)\left({{{\left({{{{\lambda_1}(x)} \over {{\lambda_2}(x)}}} \right)}^p} - 1} \right) + \lambda_2^m(x)\lambda_1^n(x)\left({{{\left({{{{\lambda_2}(x)} \over {{\lambda_1}(x)}}} \right)}^p} - 1} \right)} \right]\widehat {{\lambda_1}(x)}\widehat {{\lambda_2}(x)}} \over {9{x^2} - 8}}.} \hfill}

Now, we give such identities for generalized commutative Mersenne quaternions and generalized commutative Mersenne–Lucas quaternions. Assume that 1^2^ {{\bf{\hat 1}} \cdot {\bf{\hat 2}}} is given by (10).

  • Catalan-type identities for r ≥ 0 and nr gcMn+rgcMnr(gcMn)2=2n+12n+r2nr1^2^,gcMLn+rgcMLnr(gcMLn)2=2n+r+2nr2n+11^2^, \matrix{\hfill {gc{{\cal M}_{n + r}} \cdot gc{{\cal M}_{n - r}} - {{(gc{{\cal M}_n})}^2} = \left({{2^{n + 1}} - {2^{n + r}} - {2^{n - r}}} \right){\bf{\hat 1}} \cdot {\bf{\hat 2}},} \cr \hfill {gc{\cal M}{{\cal L}_{n + r}} \cdot gc{\cal M}{{\cal L}_{n - r}} - {{(gc{\cal M}{{\cal L}_n})}^2} = \left({{2^{n + r}} + {2^{n - r}} - {2^{n + 1}}} \right){\bf{\hat 1}} \cdot {\bf{\hat 2}},}}

  • Cassini-type identities for n ≥ 1 gcMn+1gcMn1(gcMn)2=2n11^2^,gcMLn+1gcMLn1(gcMLn)2=2n11^2^, \matrix{{gc{{\cal M}_{n + 1}} \cdot gc{{\cal M}_{n - 1}} - {{(gc{{\cal M}_n})}^2}} & {= - {2^{n - 1}} \cdot {\bf{\hat 1}} \cdot {\bf{\hat 2}},} \cr {gc{\cal M}{{\cal L}_{n + 1}} \cdot gc{\cal M}{{\cal L}_{n - 1}} - {{(gc{\cal M}{{\cal L}_n})}^2}} & {= {2^{n - 1}} \cdot {\bf{\hat 1}} \cdot {\bf{\hat 2}},\,\,\,}}

  • ďOcagne-type identities for nm gcMngcMm+1gcMn+1gcMm=(2n2m)1^2^,gcMLngcMLm+1gcMLn+1gcMLm=(2m2n)1^2^, \matrix{\hfill {gc{{\cal M}_n} \cdot gc{{\cal M}_{m + 1}} - gc{{\cal M}_{n + 1}} \cdot gc{{\cal M}_m} = ({2^n} - {2^m}){\bf{\hat 1}} \cdot {\bf{\hat 2}},} \cr \hfill {gc{\cal M}{{\cal L}_n} \cdot gc{\cal M}{{\cal L}_{m + 1}} - gc{\cal M}{{\cal L}_{n + 1}} \cdot gc{\cal M}{{\cal L}_m} = ({2^m} - {2^n}){\bf{\hat 1}} \cdot {\bf{\hat 2}},}}

  • Vajda-type identities for m ≥ 0, p ≥ 0, np gcMm+pgcMnpgcMmgcMn=(2m(12p)+2n(12p))1^2^,gcMLm+pgcMLnpgcMLmgcMLn=(2m(2p1)+2n(2p1))1^2^. \matrix{{gc{{\cal M}_{m + p}} \cdot gc{{\cal M}_{n - p}} - gc{{\cal M}_m} \cdot gc{{\cal M}_n} = ({2^m}(1 - {2^p}) + {2^n}(1 - {2^{- p}})){\bf{\hat 1}} \cdot {\bf{\hat 2}},} \cr {gc{\cal M}{{\cal L}_{m + p}} \cdot gc{\cal M}{{\cal L}_{n - p}} - gc{\cal M}{{\cal L}_m} \cdot gc{\cal M}{{\cal L}_n} = ({2^m}({2^p} - 1) + {2^n}({2^{- p}} - 1)){\bf{\hat 1}} \cdot {\bf{\hat 2}}.}}

4.
Matrix generators and generating functions

Now, we give the matrix representations of gcℳn(x). By Theorem 1 we get the following result.

Theorem 6

Let n ≥ 1 be an integer and x be a real variable. Then gcMn+1(x)gcMn(x)=3x210 gcMn(x)gcMn1(x). \left[ {\matrix{{gc{{\cal M}_{n + 1}}(x)} \hfill \cr {gc{{\cal M}_n}(x)} \hfill \cr}} \right] = \left[ {\matrix{{3x} & {- 2} \cr 1 & 0 \cr}} \right]\; \cdot \left[ {\matrix{{gc{{\cal M}_n}(x)} \cr {gc{{\cal M}_{n - 1}}(x)} \cr}} \right].

Theorem 7

Let n ≥ 0 be an integer and x be a real variable. Then (11) gcMn+2(x)gcMn+1(x)gcMn+1(x)gcMn(x)=gcM2(x)gcM1(x)gcM1(x)gcM0(x)3x120n. \left[ {\matrix{{gc{{\cal M}_{n + 2}}(x)} & {gc{{\cal M}_{n + 1}}(x)} \cr {gc{{\cal M}_{n + 1}}(x)} & {gc{{\cal M}_n}(x)} \cr}} \right] = \left[ {\matrix{{gc{{\cal M}_2}(x)} & {gc{{\cal M}_1}(x)} \cr {gc{{\cal M}_1}(x)} & {gc{{\cal M}_0}(x)} \cr}} \right] \cdot {\left[ {\matrix{{3x} \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]^n}.

Proof

We use induction on n. If n = 0 then the result is obvious. Assuming the formula (11) holds for n ≥ 0, we shall prove it for n + 1.

Using induction’s hypothesis and Theorem 1, we have gcM2(x)gcM1(x)gcM1(x)gcM0(x)3x120n3x120=gcMn+2(x)gcMn+1(x)gcMn+1(x)gcMn(x)  3x120=3xgcMn+2(x)2gcMn+1(x)gcMn+2(x)3xgcMn+1(x)2gcMn(x) gcMn+1(x)=gcMn+3(x)gcMn+2(x)gcMn+2(x)gcMn+1(x) , \matrix{{\left[ {\matrix{{gc{{\cal M}_2}(x)} & {gc{{\cal M}_1}(x)} \cr {gc{{\cal M}_1}(x)} & {gc{{\cal M}_0}(x)} \cr}} \right] \cdot {{\left[ {\matrix{{3x} \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]}^n} \cdot \left[ {\matrix{{3x} \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {\matrix{{gc{{\cal M}_{n + 2}}(x)} \hfill & {gc{{\cal M}_{n + 1}}(x)} \hfill \cr {gc{{\cal M}_{n + 1}}(x)} \hfill & {gc{{\cal M}_n}(x)} \hfill \cr} \;} \right]\; \cdot \left[ {\matrix{{3x} \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {\matrix{{3xgc{{\cal M}_{n + 2}}(x) - 2gc{{\cal M}_{n + 1}}(x)} \hfill & {gc{{\cal M}_{n + 2}}(x)} \hfill \cr {3xgc{{\cal M}_{n + 1}}(x) - 2gc{{\cal M}_n}(x)} \hfill & {\;gc{{\cal M}_{n + 1}}(x)} \hfill \cr}} \right]} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {\matrix{{gc{{\cal M}_{n + 3}}(x)} & {gc{{\cal M}_{n + 2}}(x)} \cr {gc{{\cal M}_{n + 2}}(x)} & {gc{{\cal M}_{n + 1}}(x)} \cr} \;} \right],} \hfill} which ends the proof.

Corollary 4

Let n ≥ 0 be an integer. Then gcMn+2gcMn+1gcMn+1gcMn=gcM2gcM1gcM1gcM0 3120n. \left[ {\matrix{{gc{{\cal M}_{n + 2}}} \hfill & {gc{{\cal M}_{n + 1}}} \hfill \cr {gc{{\cal M}_{n + 1}}} \hfill & {gc{{\cal M}_n}} \hfill \cr}} \right] = \left[ {\matrix{{gc{{\cal M}_2}} \hfill & {gc{{\cal M}_1}} \hfill \cr {gc{{\cal M}_1}} \hfill & {gc{{\cal M}_0}} \hfill \cr}} \right]\; \cdot {\left[ {\matrix{3 \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]^n}.

In the same way, we can prove the following results.

Theorem 8

Let n ≥ 0 be an integer and x be a real variable. Then gcMLn+2(x)gcMLn+1(x)gcMLn+1(x)gcMLn(x)=gcML2(x)gcML1(x)gcML1(x)gcML0(x)3x120 \left[ {\matrix{{gc{\cal M}{{\cal L}_{n + 2}}(x)} \hfill & {gc{\cal M}{{\cal L}_{n + 1}}(x)} \hfill \cr {gc{\cal M}{{\cal L}_{n + 1}}(x)} \hfill & {gc{\cal M}{{\cal L}_n}(x)} \hfill \cr}} \right] = \left[ {\matrix{{gc{\cal M}{{\cal L}_2}(x)} & {gc{\cal M}{{\cal L}_1}(x)} \cr {gc{\cal M}{{\cal L}_1}(x)} & {gc{\cal M}{{\cal L}_0}(x)} \cr}} \right] \cdot \left[ {\matrix{{3x} \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]

Corollary 5

Let n ≥ 0 be an integer. Then gcMLn+2gcMLn+1gcMLn+1gcMLn=gcML2gcML1gcML1gcML03120n. \left[ {\matrix{{gc{\cal M}{{\cal L}_{n + 2}}} \hfill & {gc{\cal M}{{\cal L}_{n + 1}}} \hfill \cr {gc{\cal M}{{\cal L}_{n + 1}}} \hfill & {gc{\cal M}{{\cal L}_n}} \hfill \cr}} \right] = \left[ {\matrix{{gc{\cal M}{{\cal L}_2}} \hfill & {gc{\cal M}{{\cal L}_1}} \hfill \cr {gc{\cal M}{{\cal L}_1}} \hfill & {gc{\cal M}{{\cal L}_0}} \hfill \cr}} \right] \cdot {\left[ {\matrix{3 \hfill & 1 \hfill \cr {- 2} \hfill & 0 \hfill \cr}} \right]^n}.

Theorem 9

The generating function of the generalized commutative Mersenne quaternion polynomials has the following form f(t)=e1+3xe2+(9x22)e3+(12e26xe3)t13xt+2t2. f(t) = {{{e_1} + 3x{e_2} + (9{x^2} - 2){e_3} + (1 - 2{e_2} - 6x{e_3})t} \over {1 - 3xt + 2{t^2}}}.

Proof

Let f(t)=gcM0(x)+tgcM1(x)+t2gcM2(x)++tngcMn(x)+ f(t) = gc{{\cal M}_0}(x) + tgc{{\cal M}_1}(x) + {t^2}gc{{\cal M}_2}(x) + \ldots + {t^n}gc{{\cal M}_n}(x) + \ldots be the generating function of the generalized commutative Mersenne quaternion polynomials. Then 3xtf(t)=3txgcM0(x)+3t2xgcM1(x)+3t3xgc(x)++3tnxgcMn(x)+2t2f(t)=2t2gcM0(x)+2t3gcM1(x)+2t4gcM2(x)++2tngcMn2(x)+. \matrix{{3xtf(t) = 3txgc{{\cal M}_0}(x) + 3{t^2}xgc{{\cal M}_1}(x) + 3{t^3}xgc(x) + \ldots + 3{t^n}xgc{{\cal M}_n}(x) + \ldots} \hfill \cr {2{t^2}f(t) = 2{t^2}gc{{\cal M}_0}(x) + 2{t^3}gc{{\cal M}_1}(x) + 2{t^4}gc{{\cal M}_2}(x) + \ldots + 2{t^n}gc{{\cal M}_{n - 2}}(x) + \ldots.} \hfill} Hence, by the recurrence gcn(x) = 3xgcn−1(x) − 2gcn−2(x), we get f(t)3xtf(t)+2t2f(t)=gcM0(x)+gcM1(x)3xgc(x)t+(2gcM0(x)+gcM2(x)3xgcM1(x))t2+=gcM0(x)+(gcM1(x)3xgcM0(x))t. \matrix{{f(t) - 3xtf(t) + 2{t^2}f(t)} \hfill & {= gc{{\cal M}_0}(x) + \left({gc{{\cal M}_1}(x) - 3xgc(x)} \right)t} \hfill \cr {} \hfill & {+ (2gc{{\cal M}_0}(x) + gc{{\cal M}_2}(x) - 3xgc{{\cal M}_1}(x)){t^2} + \ldots} \hfill \cr {} \hfill & {= gc{{\cal M}_0}(x) + (gc{{\cal M}_1}(x) - 3xgc{{\cal M}_0}(x))t.} \hfill} Thus f(t)=gcM0(x)+(gcM1(x)3xgcM0(x))t13xt+2t2. f(t) = {{gc{{\cal M}_0}(x) + (gc{{\cal M}_1}(x) - 3xgc{{\cal M}_0}(x))t} \over {1 - 3xt + 2{t^2}}}. After simple calculations we obtain f(t)=e1+3xe2+(9x22)e3+(12e26xe3)t13xt+2t2. f(t) = {{{e_1} + 3x{e_2} + (9{x^2} - 2){e_3} + (1 - 2{e_2} - 6x{e_3})t} \over {1 - 3xt + 2{t^2}}}.

Theorem 10

The generating function of the generalized commutative Mersenne–Lucas quaternion polynomials has the following form g(t)=gcML0(x)+(gcML1(x)3xgcML0(x))t13xt+2t2, g(t) = {{gc{\cal M}{{\cal L}_0}(x) + (gc{\cal M}{{\cal L}_1}(x) - 3xgc{\cal M}{{\cal L}_0}(x))t} \over {1 - 3xt + 2{t^2}}}, where gcML0(x)=2+3e1+(9x4)e2+(27x212x6)e3,gcML1(x)3xgcML0(x)=3+(3x4)e16e2+(18x+8)e3. \matrix{{gc{\cal M}{{\cal L}_0}(x) = 2 + 3{e_1} + (9x - 4){e_2} + (27{x^2} - 12x - 6){e_3},} \cr {gc{\cal M}{{\cal L}_1}(x) - 3xgc{\cal M}{{\cal L}_0}(x) = 3 + (3x - 4){e_1} - 6{e_2} + (- 18x + 8){e_3}.}}

Corollary 6

The generating function of the generalized commutative Mersenne quaternions has the following form fM(t)=e1+3e2+7e3+(12e26e3)t13t+2t2. {f_M}(t) = {{{e_1} + 3{e_2} + 7{e_3} + (1 - 2{e_2} - 6{e_3})t} \over {1 - 3t + 2{t^2}}}.

Corollary 7

The generating function of the generalized commutative Mersenne–Lucas quaternions has the following form gL(t)=2+3e1+5e2+9e3+(3e16e210e3)t13t+2t2. {g_L}(t) = {{2 + 3{e_1} + 5{e_2} + 9{e_3} + (3 - {e_1} - 6{e_2} - 10{e_3})t} \over {1 - 3t + 2{t^2}}}.

Concluding remarks

For any positive integer n, the n-th bivariate Horadam polynomial hn(x, y) was defined in [16] as hn(x, y) = pxhn−1(x, y) + qyhn−2(x, y) for n ≥ 3 with the initial values h1(x, y) = a and h2(x, y) = bx. It is easy to see that hn(x, 1) = hn(x). Bivariate Mersenne polynomials Mn(x, y) and bivariate Mersenne Lucas polynomials mn(x, y) were defined in [1] and [14], respectively, as follows Mn(x,y)=3yMn1(x,y)2xMn2(x,y)forn2 \matrix{{{M_n}(x,y) = 3y{M_{n - 1}}(x,y) - 2x{M_{n - 2}}(x,y)} & {{\rm{for}}\,n \ge 2}} with M0(x, y) = 0, M1(x, y) = 1 and mn(x,y)=3ymn1(x,y)2xmn2(x,y)forn2 \matrix{{{m_n}(x,y) = 3y{m_{n - 1}}(x,y) - 2x{m_{n - 2}}(x,y)} & {{\rm{for}}\,n \ge 2}} with m0(x, y) = 2, m1(x, y) = 3y.

It is worth noting that, unlike before, Mn(1, x) = Mn(x) and mn(1, x) = mn(x). Using the above definitions, we can define, for any variables x, y and any nonnegative integer n, the n-th bivariate generalized commutative Mersenne quaternion polynomial gcn(x, y) and the n-th bivariate generalized commutative Mersenne–Lucas quaternion polynomial gc ℳℒn(x, y) as follows gcMn(x,y)=Mn(x,y)+Mn+1(x,y)e1+Mn+2(x,y)e2+Mn+3(x,y)e3,gcMLn(x,y)=mn(x,y)+mn+1(x,y)e1+mn+2(x,y)e2+mn+3(x,y)e3. \matrix{{\,\,\,\,gc{{\cal M}_n}(x,y) = {M_n}(x,y) + {M_{n + 1}}(x,y){e_1} + {M_{n + 2}}(x,y){e_2} + {M_{n + 3}}(x,y){e_3},} \hfill \cr {gc{\cal M}{{\cal L}_n}(x,y) = {m_n}(x,y) + {m_{n + 1}}(x,y){e_1} + {m_{n + 2}}(x,y){e_2} + {m_{n + 3}}(x,y){e_3}.} \hfill \cr} Further work may involve research on these polynomials.

DOI: https://doi.org/10.2478/amsil-2025-0017 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: Jun 21, 2025
Accepted on: Oct 26, 2025
Published on: Nov 15, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Dorota Bród, Anetta Szynal-Liana, Mirosław Liana, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT