Have a personal or library account? Click to login
Global Central Limit Theorems for Stationary Markov Chains Cover

Global Central Limit Theorems for Stationary Markov Chains

By: Michael Lin  
Open Access
|May 2025

References

  1. J. Aaronson, M. Lin, and B. Weiss, Mixing properties of Markov operators and ergodic transformations, and ergodicity of Cartesian products, Israel J. Math. 33 (1979), no. 3–4, 198–224.
  2. M.E. Becker, A condition equivalent to uniform ergodicity, Studia Math. 167 (2005), no. 3, 215–218.
  3. R.C. Bradley, Information regularity and the central limit question, Rocky Mountain J. Math. 13 (1983), no. 1, 77–97.
  4. R.C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv. 2 (2005), 107–144.
  5. R.C. Bradley, On some basic features of strictly stationary, reversible Markov chains, J. Time Series Anal. 42 (2021), no. 5–6, 499–533.
  6. R.C. Bradley, On some possible combinations of mixing rates for strictly stationary, reversible Markov chains, Rocky Mountain J. Math. 54 (2024), no. 2, 387–406.
  7. F.E. Browder, On the iteration of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), 773–780.
  8. Y.S. Chow and H. Teicher, Probability Theory. Independence, Interchangeability, Martingales, Second Ed., Springer Texts Statist., Springer-Verlag, New York-Berlin, 1988.
  9. Yu.A. Davydov, On the strong mixing property for Markov chains with a countable number of states, Soviet Math. Dokl. 10 (1969), 825–827.
  10. Yu.A. Davydov, Mixing conditions for Markov chains, Theory Probab. Appl. 18 (1973), no. 2, 312–328.
  11. Y. Derriennic and M. Lin, Variance bounding Markov chains, L2-uniform mean ergodicity and the CLT, Stoch. Dyn. 11 (2011), no. 1, 81–94.
  12. P. Doukhan, P. Massart, and E. Rio, The functional central limit theorem for strongly mixing processes, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 1, 63–82.
  13. S.R. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math. 13 (1963), 551–562.
  14. J. Glück, Spectral gaps for hyperbounded operators, Adv. Math. 362 (2020), 106958, 24 pp.
  15. M.I. Gordin and B.A. Lifshits, The central limit theorem for stationary Markov processes, Soviet Math. Dokl. 19 (1978), 392–394.
  16. O. Häggström, On the central limit theorem for geometrically ergodic Markov chains, Probab. Theory Related Fields 132 (2005), no. 1, 74–82. Acknowledgement of priority in: Probab. Theory Related Fields 135 (2006), no. 3, 470.
  17. L. Hervé and F. Pène, The Nagaev-Guivarc’h method via the Keller-Liverani theorem, Bull. Soc. Math. France 138 (2010), no. 3, 415–489.
  18. I.A. Ibragimov, Some limit theorems for stationary processes, Theory Probab. Appl. 7 (1962), no. 4, 349–382.
  19. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff Publishing, Groningen, 1971.
  20. M. Lin, On the uniform ergodic theorem, Proc. Amer. Math. Soc. 43 (1974), 337–340.
  21. S.V. Nagaev, More exact limit theorems for homogeneous Markov chains, Theory Probab. Appl. 6 (1961), no. 1, 62–81.
  22. G.O. Roberts and J.S. Rosenthal, Geometric ergodicity and hybrid Markov chains, Electron. Comm. Probab. 2 (1997), no. 2, 13–25.
  23. G.O. Roberts and R.L. Tweedie, Geometric L2 and L1 convergence are equivalent for reversible Markov chains, J. Appl. Probab. 38A (2001), 37–41.
  24. M. Rosenblatt, Markov Processes. Structure and Asymptotic Behavior, Die Grundlehren der mathematischen Wissenschaften, Band 184, Springer-Verlag, New York-Heidelberg, 1971.
  25. E. Slutsky, Über stochastische Asymptoten und Grenzwerte, Metron 5 (1925), no. 3, 3–89. See lipari.istat.it/digibib/Metron.
  26. W. Stadje and A. Wübker, Three kinds of geometric convergence for Markov chains and the spectral gap property, Electron. J. Probab. 16 (2011), no. 34, 1001–1019.
DOI: https://doi.org/10.2478/amsil-2025-0011 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 177 - 189
Submitted on: Feb 6, 2025
Accepted on: Apr 23, 2025
Published on: May 20, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Michael Lin, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.