Have a personal or library account? Click to login
The Twenty-fourth Debrecen–Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló (Hungary), February 6 – 9, 2025 Cover

The Twenty-fourth Debrecen–Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló (Hungary), February 6 – 9, 2025

By: Maciej Sablik  
Open Access
|May 2025

References

  1. Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.
  2. P. Kutas, Algebraic conditions for additive functions over the reals and over finite fields, Aequationes Math. 92 (2018), no. 3, 563–575.
  3. I. Blahota and G. Gát, Approximation by subsequences of matrix transform means of some two-dimensional rectangle Walsh-Fourier series, J. Fourier Anal. Appl. 30 (2024), no. 5, Paper No. 51, 35 pp.
  4. G. Gát, Almost everywhere divergence of Cesàro means of subsequences of partial sums of trigonometric Fourier series, Math. Ann. 389 (2024), no. 4, 4199–4231.
  5. F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514–526.
  6. A. Gilányi and Z. Páles, Bernstein–Doetsch and Sierpiński theorems for (M, N)-convex functions, Talk, 11th International Conference on Functional Equations and Inequalities, Stefan Banach International Mathematical Center, Będlewo, Poland, September 17–23, 2006.
  7. C. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics, Springer, New York, 2006.
  8. T. Zgraja, Continuity of functions which are convex with respect to means, Publ. Math. Debrecen 63 (2003), no. 3, 401–411.
  9. Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289–297.
  10. Z. Páles, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 265–270.
  11. Z. Páles, On comparison of homogeneous means, Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 32 (1989), 261–266.
  12. Z. Páles, Comparison of two variable homogeneous means, in: W. Walter (ed.), General Inequalities. 6, Internat. Ser. Numer. Math., 103, Birkhäuser Verlag, Basel, 1992, pp. 59–70.
  13. A. Járai, Gy. Maksa, and Z. Páles, On Cauchy-differences that are also quasisums, Publ. Math. Debrecen 65 (2004), no. 3–4, 381–398.
  14. T. Kiss, Regular solutions of a functional equation derived from the invariance problem of Matkowski means, Aequationes Math. 96 (2022), no. 5, 1089–1124.
  15. T. Kiss, A Pexider equation containing the aritmetic mean, Aequationes Math. 98 (2024), no. 2, 579–589.
  16. P. Tóth, Measurable solutions of an alternative functional equation, submitted in 2024.
  17. M. Bessenyei and Z. Páles, Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl. 6 (2003), no. 3, 379–392.
  18. O. Hesselager, Extensions of Ohlin's lemma with applications to optimal reinsurance structures, Insurance Math. Econom. 13 (1993), no. 1, 83–97.
  19. Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no 1, 17–22.
  20. Z. Boros and R. Menzer, An alternative equation for generalized monomials, Aequationes Math. 97 (2023), no. 1, 113–120.
  21. Z. Boros and R. Menzer, An alternative equation for generalized polynomials of degree two, Ann. Math. Sil. 38 (2024), no. 2, 214–220.
  22. Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.
  23. G. Aumann, Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften, J. Reine Angew. Math. 176 (1937), 49–55.
  24. T. Kiss, On the balancing property of Matkowski means, Aequationes Math. 95 (2021), no. 1, 75–89.
  25. T. Kiss and G. Nagy, On the σ-balancing property of multivariate generalized quasiarithmetic means, Math. Inequal. Appl. 27 (2024), no. 4, 1009–1019.
  26. Z. Gajda and Z. Kominek, On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), no. 1, 25–38.
  27. P. Kranz, Additive functionals on abelian semigroup, Comment. Math. Prace Mat. 16 (1972), 239–246.
  28. R. Grünwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math. 94 (2020), no. 4, 651–677.
  29. L. Losonczi, Equality of two variable weighted means: reduction to differential equations, Aequationes Math. 58 (1999), no. 3, 223–241.
  30. Z. Páles and A. Zakaria, On the equality problem of two-variable Bajraktarević means under first-order differentiability assumptions, Aequationes Math. 97 (2023), no. 2, 279–294.
  31. F. Bellini and E. Rosazza Gianin, On Haezendonck risk measures, J. Bank. Finance 32 (2008), no. 6, 986–994.
  32. Y. Feng and Y. Dong, Set-valued Haezendonck-Goovaerts risk measure and its properties, Discrete Dyn. Nat. Soc. 2017, Art. ID 5320908, 7 pp.
  33. M.J. Goovaerts, R. Kaas, J. Dhaene, and Q. Tang, Some new classes of consistent risk measures, Insurance Math. Econom. 34 (2004), no. 3, 505–516.
  34. J. Haezendonck and M. Goovaerts, A new premium calculation principle based on Orlicz norms, Insurance Math. Econom. 1 (1982), no. 1, 41–53.
  35. R. Grünwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math. 94 (2020), no. 4, 651–677.
  36. Report of Meeting. The 60th International Symposium on Functional Equations, Hotel Rewita, Kościelisko (Poland), June 9–15, 2024, Aequationes Math. 98 (2024), no. 6, 1689–1712.
DOI: https://doi.org/10.2478/amsil-2025-0008 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 381 - 394
Submitted on: Feb 18, 2025
Accepted on: Mar 5, 2025
Published on: May 20, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 , published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.