References
- Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.
- P. Kutas, Algebraic conditions for additive functions over the reals and over finite fields, Aequationes Math. 92 (2018), no. 3, 563–575.
- I. Blahota and G. Gát, Approximation by subsequences of matrix transform means of some two-dimensional rectangle Walsh-Fourier series, J. Fourier Anal. Appl. 30 (2024), no. 5, Paper No. 51, 35 pp.
- G. Gát, Almost everywhere divergence of Cesàro means of subsequences of partial sums of trigonometric Fourier series, Math. Ann. 389 (2024), no. 4, 4199–4231.
- F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514–526.
- A. Gilányi and Z. Páles, Bernstein–Doetsch and Sierpiński theorems for (M, N)-convex functions, Talk, 11th International Conference on Functional Equations and Inequalities, Stefan Banach International Mathematical Center, Będlewo, Poland, September 17–23, 2006.
- C. Niculescu and L.-E. Persson, Convex Functions and Their Applications, CMS Books in Mathematics, Springer, New York, 2006.
- T. Zgraja, Continuity of functions which are convex with respect to means, Publ. Math. Debrecen 63 (2003), no. 3, 401–411.
- Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289–297.
- Z. Páles, Inequalities for sums of powers, J. Math. Anal. Appl. 131 (1988), no. 1, 265–270.
- Z. Páles, On comparison of homogeneous means, Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 32 (1989), 261–266.
- Z. Páles, Comparison of two variable homogeneous means, in: W. Walter (ed.), General Inequalities. 6, Internat. Ser. Numer. Math., 103, Birkhäuser Verlag, Basel, 1992, pp. 59–70.
- A. Járai, Gy. Maksa, and Z. Páles, On Cauchy-differences that are also quasisums, Publ. Math. Debrecen 65 (2004), no. 3–4, 381–398.
- T. Kiss, Regular solutions of a functional equation derived from the invariance problem of Matkowski means, Aequationes Math. 96 (2022), no. 5, 1089–1124.
- T. Kiss, A Pexider equation containing the aritmetic mean, Aequationes Math. 98 (2024), no. 2, 579–589.
- P. Tóth, Measurable solutions of an alternative functional equation, submitted in 2024.
- M. Bessenyei and Z. Páles, Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl. 6 (2003), no. 3, 379–392.
- O. Hesselager, Extensions of Ohlin's lemma with applications to optimal reinsurance structures, Insurance Math. Econom. 13 (1993), no. 1, 83–97.
- Z. Boros and W. Fechner, An alternative equation for polynomial functions, Aequationes Math. 89 (2015), no 1, 17–22.
- Z. Boros and R. Menzer, An alternative equation for generalized monomials, Aequationes Math. 97 (2023), no. 1, 113–120.
- Z. Boros and R. Menzer, An alternative equation for generalized polynomials of degree two, Ann. Math. Sil. 38 (2024), no. 2, 214–220.
- Z. Kominek, L. Reich, and J. Schwaiger, On additive functions fulfilling some additional condition, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 207 (1998), 35–42.
- G. Aumann, Vollkommene Funktionalmittel und gewisse Kegelschnitteigenschaften, J. Reine Angew. Math. 176 (1937), 49–55.
- T. Kiss, On the balancing property of Matkowski means, Aequationes Math. 95 (2021), no. 1, 75–89.
- T. Kiss and G. Nagy, On the σ-balancing property of multivariate generalized quasiarithmetic means, Math. Inequal. Appl. 27 (2024), no. 4, 1009–1019.
- Z. Gajda and Z. Kominek, On separations theorems for subadditive and superadditive functionals, Studia Math. 100 (1991), no. 1, 25–38.
- P. Kranz, Additive functionals on abelian semigroup, Comment. Math. Prace Mat. 16 (1972), 239–246.
- R. Grünwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math. 94 (2020), no. 4, 651–677.
- L. Losonczi, Equality of two variable weighted means: reduction to differential equations, Aequationes Math. 58 (1999), no. 3, 223–241.
- Z. Páles and A. Zakaria, On the equality problem of two-variable Bajraktarević means under first-order differentiability assumptions, Aequationes Math. 97 (2023), no. 2, 279–294.
- F. Bellini and E. Rosazza Gianin, On Haezendonck risk measures, J. Bank. Finance 32 (2008), no. 6, 986–994.
- Y. Feng and Y. Dong, Set-valued Haezendonck-Goovaerts risk measure and its properties, Discrete Dyn. Nat. Soc. 2017, Art. ID 5320908, 7 pp.
- M.J. Goovaerts, R. Kaas, J. Dhaene, and Q. Tang, Some new classes of consistent risk measures, Insurance Math. Econom. 34 (2004), no. 3, 505–516.
- J. Haezendonck and M. Goovaerts, A new premium calculation principle based on Orlicz norms, Insurance Math. Econom. 1 (1982), no. 1, 41–53.
- R. Grünwald and Z. Páles, On the equality problem of generalized Bajraktarević means, Aequationes Math. 94 (2020), no. 4, 651–677.
- Report of Meeting. The 60th International Symposium on Functional Equations, Hotel Rewita, Kościelisko (Poland), June 9–15, 2024, Aequationes Math. 98 (2024), no. 6, 1689–1712.