1.Introduction and preliminary results
We use the standard definitions and notations of the graph theory, see [4] and [6]. Let us recall definitions of several very important sequences in the numbers theory. The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2. The Pell sequence (Pn) is also defined by recurrence relation Pn = 2Pn−1 + Pn−2, for n ≥ 2 with the initial conditions P0 = 0, P1 = 1. The Jacobsthal sequence (Jn) is defined recursively as follows Jn = Jn−1 + 2Jn−2, for n ≥ 2 with the initial conditions J0 = 0, J1 = 1. The first few Fibonacci, Pell and Jacobsthal numbers are 0, 1, 1, 2, 3, 5, 8, . . . , 0, 1, 2, 5, 12, 29, 70, . . . and 0, 1, 1, 3, 5, 11, 21, . . . , respectively.
In recent years many interesting generalizations of above mentioned classical sequences appeared in the mathematical literature. For example generalizations of the Pell numbers were introduced and studied in [8],[9],[10], and in [13], [15],[16],[17],[18], [20]. Moreover in [16] generalized Jacobsthal numbers were considered.
In this paper we study a new kind of generalization of Jacobsthal numbers in the distance sense, i.e., generalization by the k-th order linear recurrence relation. This concept of generalization of Jacobsthal numbers is inspired by results given in [1],[2],[3], [5], [15], [17] and [19] where generalizations of Fibonacci numbers, Lucas numbers and Pell numbers were introduced.
For fixed integers k ≥ 1 and n ≥ 0 by J(i)(k, n) we denote the (2, k)-distance Jacobsthal numbers of the i-th kind, i = 1, 2, i.e., numbers defined as follows
(1)
{J^{\left(i \right)}}\left({k,n} \right) = {J^{\left(i \right)}}\left({k,n - k} \right) + 2{J^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,\,n \ge k + 1
with initial conditions J(i)(k, 0) = 0, J(i)(k, 1) = 1 and for 2 ≤ n ≤ k:
{J^{\left(1 \right)}}\left({k,n} \right) = \left\{{\matrix{{\matrix{0 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{even}},} \hfill \cr {{2^{{{n - 1} \over 2}}}} \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{odd}},} \hfill \cr}} \hfill & {{J^{(2)}}(k,n) = {2^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor}}.} \hfill \cr}} \right.
In the following tables, we present several initial terms of the (2, k)-distance Jacobsthal sequences J(i)(k, n), i = 1, 2, for special values of k and n.
Table 1.The (2, k)-distance Jacobsthal numbers of the first kind J(1)(k, n)
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|
| J(1)(1, n) | 0 | 1 | 1 | 3 | 5 | 11 | 21 | 43 | 85 | 171 | 341 | 683 | 1365 | 2731 | 5461 | 10923 |
| J(1)(2, n) | 0 | 1 | 0 | 3 | 0 | 9 | 0 | 27 | 0 | 81 | 0 | 243 | 0 | 729 | 0 | 2187 |
| J(1)(3, n) | 0 | 1 | 0 | 2 | 1 | 4 | 4 | 9 | 12 | 22 | 33 | 56 | 88 | 145 | 232 | 378 |
| J(1)(4, n) | 0 | 1 | 0 | 2 | 0 | 5 | 0 | 12 | 0 | 29 | 0 | 70 | 0 | 169 | 0 | 408 |
| J(1)(5, n) | 0 | 1 | 0 | 2 | 0 | 4 | 1 | 8 | 4 | 16 | 12 | 33 | 32 | 70 | 80 | 152 |
| J(1)(6, n) | 0 | 1 | 0 | 2 | 0 | 4 | 0 | 9 | 0 | 20 | 0 | 44 | 0 | 97 | 0 | 214 |
| J(1)(7, n) | 0 | 1 | 0 | 2 | 0 | 4 | 0 | 8 | 1 | 16 | 4 | 32 | 12 | 64 | 32 | 129 |
Table 2.The (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n)
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|---|
| J(2)(1, n) | 0 | 1 | 1 | 3 | 5 | 11 | 21 | 43 | 85 | 171 | 341 | 683 | 1365 | 2731 | 5461 | 10923 |
| J(2)(2, n) | 0 | 1 | 1 | 3 | 3 | 9 | 9 | 27 | 27 | 81 | 81 | 243 | 243 | 729 | 729 | 2187 |
| J(2)(3, n) | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 |
| J(2)(4, n) | 0 | 1 | 1 | 2 | 2 | 5 | 5 | 12 | 12 | 29 | 29 | 70 | 70 | 169 | 169 | 408 |
| J(2)(5, n) | 0 | 1 | 1 | 2 | 2 | 4 | 5 | 9 | 12 | 20 | 28 | 45 | 65 | 102 | 150 | 232 |
| J(2)(6, n) | 0 | 1 | 1 | 2 | 2 | 4 | 4 | 9 | 9 | 20 | 20 | 44 | 44 | 97 | 97 | 214 |
| J(2)(7, n) | 0 | 1 | 1 | 2 | 2 | 4 | 4 | 8 | 9 | 17 | 20 | 36 | 44 | 76 | 96 | 161 |
From the definition of the (2, k)-distance Jacobsthal numbers it follows immediately that J(1)(1, n) = J(2)(1, n) = Jn. The numbers J(i)(2, n), i = 1, 2, are the elements of geometrical sequence, namely
{J^{\left(1 \right)}}(2,n) = {3^{{{n - 1} \over 2}}}
for odd n and
{J^{\left(2 \right)}}(2,n) = {3^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor}}
. Moreover if k is even and n is odd then J(2)(k, n) = J(2)(k, n + 1).
For k = 3 we have the following relationships between J(1)(k, n), J(2)(k, n) and the Fibonacci numbers Fn while for k = 4 we have their connections with the Pell numbers Pn.
Theorem 1
Let n be an integer. Then
- (i)
J(1)(3, n) = Fn−1 − (−1)n for n ≥ 1,
- (ii)
J(2)(3, n) = Fn for n ≥ 0,
- (iii)
J(1)(4, 2n − 1) = Pn for n ≥ 1,
- (iv)
J(2)(4, 2n − 1) = J(2)(4, 2n) = Pn for n ≥ 1.
Proof
In the proof of formula (i) we use the induction on n. For n = 1 or n = 2 the result follows immediately by the definitions of J(1)(k, n) and the Fibonacci numbers Fn.
Assume now that formula (i) is true for t = 1, 2, . . . , n with arbitrary n ≥ 2. We will prove that J(1)(3, n + 1) = Fn − (−1)n+1. By the induction hypothesis and the definitions of J(1)(k, n) and Fn, we have
\matrix{{{J^{\left(1 \right)}}\left({3,n + 1} \right)} \hfill & {= {J^{\left(1 \right)}}\left({3,n - 2} \right) + 2{J^{\left(1 \right)}}\left({3,n - 1} \right)} \hfill \cr {} \hfill & {= {F_{n - 3}} - {{(- 1)}^{n - 2}} + 2({F_{n - 2}} - {{(- 1)}^{n - 1}})} \hfill \cr {} \hfill & {= 2{F_{n - 2}} + {F_{n - 3}} + {{(- 1)}^n} = {F_{n - 2}} + {F_{n - 1}} + (- {1^n})} \hfill \cr {} \hfill & {= {F_n} - {{(- 1)}^{n + 1}},} \hfill \cr}
which ends the proof of (i). To prove (ii)–(iv) we can use the same method.
The following theorem shows the relation between numbers J(i)(k, n) for i = 1, 2.
Theorem 2
Let k ≥ 2, n ≥ 1 be integers. Then
- (i)
J(2)(k, n) = J(1)(k, n) + J(1)(k, n − 1),
- (ii)
{J^{(1)}}\left({k,n} \right) = \sum\limits_{i = 0}^n {{{(- 1)}^i}{J^{\left(2 \right)}}(k,n - i)}
.
Proof
In the proof of formula (i) we use the induction on n. Let n = 1, 2, . . . , k − 1. For k = 2 the result is obvious. If k ≥ 3 then we have (i) from initial conditions for J(1)(k, n) and J(2)(k, n). Assume now that n ≥ k − 1 and that the equality (i) holds for all integers k ≤ t ≤ n. We shall prove that it is true for the integer t = n + 1. Using (1) and the induction hypothesis, we obtain that
\matrix{{{J^{\left(2 \right)}}\left({k,n + 1} \right) = {J^{\left(2 \right)}}\left({k,n + 1 - k} \right) + 2{J^{\left(2 \right)}}\left({k,n - 1} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1 - k} \right) + {J^{\left(1 \right)}}\left({k,n - k} \right) + 2\left({{J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,n - 2} \right)} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1 - k} \right) + 2{J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,n - k} \right) + 2{J^{\left(1 \right)}}\left({k,n - 2} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1} \right) + {J^{\left(1 \right)}}\left({k,n} \right),} \hfill \cr}
which ends the proof of (i). The equality (ii) can be proved in the same manner.
In this paper we give the graph interpretations of considered two types of the (2, k)-distance Jacobsthal numbers with respect to a special edge colouring of a graph. Next, using these interpretations, we obtain several identities and direct formulas for them. We also give matrix representations for J(i)(k, n), i = 1, 2.
2.Graph interpretations
Let us consider an edge coloured graph G where the set of colours is {A1, A2, A3}. For α ∈ {A1, A2, A3} a subgraph of G will be said α-monochromatic if all its edges are coloured by colour α. We will write α(xy) if the edge xy of the graph has the colour α.
In [17], Trojnar-Spelina and Włoch defined so called (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph G where ki ≥ 1, i = 1, 2, 3, are integers, as a generalization of the edge-colouring introduced and studied by Piejko and Włoch in [15]. Let us recall that the (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph G is defined in such a way that every maximal, with respect to the set inclusion, Ai-monochromatic subgraph of G, can be partitioned into edge-disjoint paths of the length ki, i = 1, 2, 3 (see [17]). Many interesting properties of (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths were given in [17]. For example, it was proved that the number of (kA1, kA2, 2A3)-edge colourings by monochromatic paths is closely related to (2, k)-distance Pell numbers of the i-th kind, i = 1, 2, defined recursively as follows
{P^{\left(i \right)}}\left({k,n} \right) = 2{P^{\left(i \right)}}\left({k,n - k} \right) + {P^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,\,n \ge k
with initial conditions P(i)(k, 0) = 0, P(i)(k, 1) = 1 and for 2 ≤ n ≤ k − 1:
{P^{\left(1 \right)}}\left({k,n} \right) = \left\{{\matrix{{\matrix{0 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{even}},} \hfill \cr 1 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{odd}},} \hfill \cr}} \hfill & {{\rm{and}}} \hfill & {{P^{(2)}}(k,n) = 1.} \hfill \cr}} \right.
In this section, we give graph interpretations for the (2, k)-distance Jacobsthal numbers J(i)(k, n) in terms of (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths with k1 = k, k ≥ 1 and k2 = k3 = 2. We will use standard notation 𝒫n for a path with n vertices.
Theorem 3
Let k ≥ 1, n ≥ 2 be integers. The number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n is equal to J(1)(k, n).
Proof
Let k ≥ 1, n ≥ 2 be integers and let V (𝒫n) = {x1, x2, . . . , xn} with the numbering of vertices in the natural fashion. Then E(𝒫n) = {x1x2, x2x3, . . . , xn−1xn}. The number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n will be denoted by σ(k, n). One can easy verify that σ(k, n) = J(1)(k, n) for n = 2, . . . , k + 2.
Assume now that n ≥ k + 3. Denote by σA1 (k, n), σA2 (k, n), σA3 (k, n), the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n in which the colour of the last edge is determined respectively as follows: A1(xn−1xn), A2(xn−1xn), A3(xn−1xn). It is clear that σA1 (k, n) is equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−k and σA2 (k, n), σA3 (k, n) are equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−2. In other words σA1 (k, n) = σ(k, n − k), σA2 (k, n) = σ(k, n − 2) and σA3 (k, n) = σ(k, n − 2). From the above we have
\sigma \left({k,n} \right) = {\sigma_{{A_1}}}\left({k,n} \right) + {\sigma_{{A_2}}}\left({k,n} \right) + {\sigma_{{A_3}}}\left({k,n} \right) = \sigma \left({k,n - k} \right) + 2\sigma \left({k,n - 2} \right).
Taking into account the initial conditions we obtain that σ(k, n) = J(1)(k, n) for all n ≥ 2. The proof of Theorem 3 is completed.
Hence we obtain the following graph interpretation of Jacobsthal numbers.
Corollary 1
Let n ≥ 2 be an integer. The number of all (A1, 2A2, 2A3)-edge colourings of the graph 𝒫n is equal to Jn.
Before we give the graph interpretation for the (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n) we introduce a quasi (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph 𝒫n. Let E(𝒫n) = {e1, e2, . . . , en−1} be numbered in the natural fashion. We say that the graph 𝒫n is a quasi (k1A1, k2A2, k3A3)-edge coloured by monochromatic paths if the last r edges of 𝒫n are uncoloured where 0 ≤ r ≤ t − 1, t = min{k1, k2, k3} and the subpath 𝒫∗ ⊂ 𝒫n induced by {e1, e2, . . . , en−r−1} is (k1A1, k2A2, k3A3)-edge coloured by monochromatic paths.
From above immediately follows that (k1A1, k2A2, k3A3)-edge coloured 𝒫n is also quasi (k1A1, k2A2, k3A3)-edge coloured.
Using the same manner as that in the proof of Theorem 3 we can prove that the number of all quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n closely corresponds to the (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n). Namely we have
Theorem 4
Let k ≥ 1, n ≥ 2 be integers. The number of all quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n is equal to J(2)(k, n).
These graph interpretations will be used to derive the direct formulas for the (2, k)-distance Jacobsthal numbers J(i)(k, n), i = 1, 2.
Before that, we need to deduce certain preliminary results. Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Let pk(n, t) denote the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n such that there are exactly t monochromatic paths of the length 2 coloured by A2 or A3. This means that in such edge colouring 2t1 edges have colour A2, 2t2 edges have colour A3 where t1 + t2 = t and other n − 1 − 2t edges have colour A1.
Theorem 5
Let n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Then
{p_1}\left({n,t} \right) = \left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.
Proof
Let us consider the graph 𝒫n with the (A1, 2A2, 2A3)-edge colouring by monochromatic paths in which there are exactly t monochromatic paths of the length 2 coloured by the colour A2 or A3. This edge colouring is related to a certain partition of the set E(𝒫n) into t edge-disjoint Ai monochromatic paths of the length 2 for i = 2, 3 and n − 1 − 2t monochromatic paths of the length 1 for i = 1. We denote a number of all such partitions by δ(n, t). It is easy to observe that δ(n, t) equals to the number of all permutations with repetitions of n − 1 − t elements that are equal to 1 or 2 where the number 1 is repeated n − 1 − t times and the number 2 is repeated t times. Therefore,
\delta \left({n,t} \right) = P_{n - 1 - t}^{t,n - 1 - 2t}
, where the symbol
P_n^{{n_1},{n_2}}
denotes the number of all permutations with repetitions of the length n of two elements, where first of these elements is repeated n1 times, the second is repeated n2 times and n1 + n2 = n. Consequently we have
\delta \left({n,t} \right) = {{\left({n - 1 - t} \right)!} \over {t!\left({n - 1 - 2t} \right)!}} = \left({\matrix{{n - 1 - t} \cr t \cr}} \right).
Every of this partitions generates 2t (A1, 2A2, 2A3)-edge colourings by monochromatic paths. Therefore, the desired result follows.
Theorem 6
Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers and let
{{n - 1 - 2t} \over k} \in N \cup \{0\}
. Then for s = 0, 1, . . . , n − 1 we have
{p_k}(n,t) = {p_{k - s}}\left({n - {{s\left({n - 1 - 2t} \right)} \over k},t} \right).
Proof
Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n in which there are exactly t monochromatic paths of the length 2 coloured by the colour A2 or A3. Consequently, there are exactly
{{n - 1 - 2t} \over k}
monochromatic paths of the length k coloured by A1 in this edge colouring. If every of these paths is shorted to the A1-monochromatic paths of the length k − s, then we obtain a ((k − s)A1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph
{{\mathcal P}_{n - s{{n - 1 - 2t} \over k}}}
, in which there are
{{n - 1 - 2t} \over k}
monochromatic paths of the length k − s coloured by A1 and the number of monochromatic paths of the length 2 coloured by Ai, i = 2, 3, remains the same as in the starting edge colouring. Therefore the proof is completed.
Putting s = k − 1 in Theorem 6 we have
{p_k}\left({n,t} \right) = {p_1}\left({n - {{\left({k - 1} \right)\left({n - 1 - 2t} \right)} \over k},t} \right)
and so using Theorem 5 we obtain the following
Corollary 2
Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers and let
{{n - 1 - 2t} \over k} \in N \cup \{0\}
. Then
{p_k}(n,t) = \left({\matrix{{{1 \over k}[n - 1 + t(k - 2)]} \cr t \cr}} \right){2^{t}}.
Let us consider again such (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n, that there are exactly t monochromatic paths of the length 2 coloured by A2 or A3, i.e., in such edge colouring 2t1 edges have colour A2, 2t2 edges have colour A3 where t1 +t2 = t and other n−1−2t edges have colour A1. We can observe that such (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n exists if and only if a number
{{n - 1 - 2t} \over k}
is nonnegative integer. For given k ≥ 1 and n ≥ 2 we introduce the following notation:
I_k^n = \{t \in N \cup \{0\} :{{n - 1 - 2t} \over k} \in N \cup \{0\} \} .
Note that for example:
I_{10}^3 = \left\{{0,3} \right\}
,
I_{14}^4 = \emptyset
and
I_1^n = \left\{{0,1,2,\; \ldots ,\;\left\lfloor {{{n - 1} \over 2}} \right\rfloor} \right\}
for all positive integers n. Moreover, if
I_k^n \ne \emptyset
then pk(n, t) ≠ 0 for all
t \in I_k^n
and otherwise pk(n, t) = 0 for all t ≥ 0.
Now we are able to present the following direct formula for the numbers J(1)(k, n).
Theorem 7
Let k ≥ 1, n ≥ 1 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Then
{J^{\left(1 \right)}}(k,n) = \sum\limits_{t \in I_k^n} {\left({\matrix{{{1 \over k}[n - 1 + t(k - 2)]} \cr t \cr}} \right){2^t}\,\,\,\,\,if\,\,\,\,\,I_k^n \ne \emptyset}
and
{J^{\left(1 \right)}}\left({k,n} \right) = 0\,\,\,\,\,if\,\,\,\,\,I_k^n = \emptyset .
Proof
Using Theorem 3 we have that J(1)(k, n) is equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n. Therefore for given k ≥ 1, n ≥ 1 it can be expressed as follows
{J^{\left(1 \right)}}(k,n) = \sum\limits_{t \in I_k^n} {{p_k}\left({n,t} \right).}
Let us recall that if
I_k^n \ne \emptyset
then pk(n, t) = 0 for all t ≥ 0 and therefore in this case the result follows. Otherwise, we have pk(n, t) ≠ 0 for all
t \in I_k^n
, so an application of Corollary 2 enables us to deduce the desired equality.
Putting k = 1 in Theorem 7, we obtain the following well-known direct formula for Jacobsthal numbers.
Corollary 3
Let n ≥ 1 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Then
{J_n} = \sum\limits_{t = 1}^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor} {\left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.}
To derive the direct formula for J(2)(k, n) we need new notations. Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. By qk(n, t) we denote the number of quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n such that exactly t monochromatic paths are coloured by A2 or A3. Let us note that in this edge colouring the number of A1-monochromatic paths is equal to
\left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor
and consequently q1(n, t) = p1(n, t) so by Theorem 5 we have
(2)
{q_1}\left({n,t} \right) = \left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.
Theorem 8
Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers and s ∈ N. Then
{q_k}\left({n,t} \right) = {q_s}\left({1 + 2t + \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor s,t} \right).
Proof
Let us consider the quasi (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n in which exactly t monochromatic paths of the length 2 have colour A2 or A3. Therefore there are
\left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor
A1-monochromatic paths of the length k in this edge-colouring. If, for a given positive integer n, every of these paths is replaced by A1-monochromatic paths of the length s, then we obtain a quasi (sA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph
{{\mathcal P}_{\left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor s}}
in which the number of monochromatic paths of the length 2 coloured by Ai, i = 2, 3 remains the same as in the starting edge colouring. The proof is completed.
Putting s = 1 in Theorem 8 and using the relation (2) we obtain the following result
Corollary 4
Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Then
{q_k}(n,t) = \left({\matrix{{t + \left\lfloor {{{n - 1 - 2t} \over t}} \right\rfloor} \cr t \cr}} \right){2^t}.
Let us note that quasi (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n, such that exactly t monochromatic paths are coloured by A2 or A3, exists if and only if one of the numbers
{{n - 1 - 2t} \over k}
or
{{n - 2 - 2t} \over k}
is nonnegative integer. In order to deduce a direct formula for the (2, k)-distance Jacobsthal numbers of the second kind we introduce the following new notation:
T_k^n = \left\{{t \in N \cup \{0\} :{{n - 1 - 2t} \over k} \in N \cup \{0\} \,{\rm{or}}\,{{n - 2 - 2t} \over k} \in N \cup \{0\}} \right\}.
Observe that for example
T_7^{20} = \left\{{2,6,9} \right\}
and
T_1^n = T_2^n = \left\{{0,1,2,\; \ldots ,\left\lfloor {{{n - 1} \over 2}} \right\rfloor} \right\}
for all positive integers n. Moreover,
T_k^n \ne \emptyset
for all positive integers k and n ≥ 2.
Now we can state the analogue of Theorem 7 for the numbers J(2)(k, n).
Theorem 9
Let k ≥ 1, n ≥ 2 and
0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor
be integers. Then
{J^{\left(2 \right)}}\left({k,n} \right) = \sum\limits_{t \in T_k^n} {\left({\matrix{{t + \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor} \cr t \cr}} \right)} {2^t}.
Proof
As an immediate consequence of the graph interpretation of the numbers J(2)(k, n), given in Theorem 3, we obtain the following equality for k ≥ 1 and n ≥ 2:
{J^{\left(2 \right)}}\left({k,n} \right) = \sum\limits_{t \in T_k^n} {{q_k}\left({k,n} \right)} .
Corollary 4 makes it obvious that the desired formula holds.
3.Identities
In this part we give the identities for the (2, k)-distance Jacobsthal numbers. For special values of parameters we can reduce them to the well-known identities for the classical Jacobsthal numbers.
Theorem 10
Let k ≥ 1, m ≥ 1, n ≥ 0 be integers and let n + k − 2 ≥ 0. Then for i = 1, 2 we have
- (i)
{J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) = {J^{\left(i \right)}}\left({k,n + mk} \right)}
,
- (ii)
{2^m}{J^{\left(i \right)}}\left({k,n} \right) + \sum\limits_{i = 1}^m {{2^{m - i}}{J^{\left(i \right)}}\left({k,n - k + 2i} \right) = {J^{\left(i \right)}}\left({k,n + 2m} \right)}
.
Proof
In the proof of the part (i) we use the induction on m. If m = 1 then the equation is obvious. Assume that formula in (i) is true for an arbitrary m ≥ 1. We will prove that
{J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) = {J^{\left(i \right)}}\left({k,n + (m + 1)k} \right)} .
By the induction hypothesis and the definition of J(i)(k, n), we have
\matrix{{{J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^{m + 1} {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right)}} \hfill \cr {\,\,\,\,\,\, = {J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) + 2{J^{\left(i \right)}}\left({k,n - 2 + \left({m + 1} \right)k} \right)}} \hfill \cr {\,\,\,\,\,\, = {J^{\left(i \right)}}\left({k,n + mk} \right) + 2{J^{\left(i \right)}}\left({k,n - 2 + \left({m + 1} \right)k} \right) = {J^{\left(i \right)}}\left({k,n + \left({m + 1} \right)k} \right),} \hfill \cr}
which ends the proof of (i). The identity (ii) can be proved by the same method.
Putting n = 1 in identity (i) of Theorem 10 we obtain
Corollary 5
Let k, n be positive integers and let i = 1, 2. Then
1 + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,ik - 1} \right) = {J^{\left(i \right)}}\left({k,mk + 1} \right).}
For k = 1 we obtain the well-known identity for the classical Jacobsthal numbers:
1 + 2\sum\limits_{i = 1}^m {{J_{i - 1}} = {J_{m + 1}}.}
Putting k = 1 and n = 0 or n = 1 respectively in Theorem 10, we obtain the well-known identities for the classical Jacobsthal numbers
\sum\limits_{i = 1}^m {{2^{m - i}}{J_{2i - 1}} = {J_{2m}}} ,\,\,\,\,\,\,{2^m} + \sum\limits_{i = 1}^m {{2^{m - i}}{J_{2i}} = {J_{2m + 1}}} .
We can use the (kA1, 2A2, 2A3)-edge colouring of the path 𝒫n to obtain the following identity for the (2, k)-distance Jacobsthal numbers of the first kind.
Theorem 11
Let k ≥ 1, m ≥ k and n ≥ k be integers. Then
\matrix{{{J^{\left(1 \right)}}\left({k,m + n} \right) = 2{J^{\left(1 \right)}}\left({k,m} \right){J^{\left(1 \right)}}\left({k,n - 1} \right) + 2{J^{\left(1 \right)}}\left({k,m - 1} \right){J^{\left(1 \right)}}\left({k,n} \right)} \cr {+ \sum\limits_{i = 1}^k {{J^{\left(1 \right)}}\left({k,m + 1 - i} \right){J^{\left(1 \right)}}\left({k,n - k + i} \right).}} \cr}
Proof
Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫m+n. Let
V\left({{{\mathcal P}_{m + n}}} \right) = \left\{{{x_1},{x_2}, \ldots ,{x_m},{x_{m + 1}}, \ldots ,{x_{m + n}}} \right\}
be the set of vertices of this graph with the numbering in the natural fashion. Then
E\left({{{\mathcal P}_{m + n}}} \right) = \left\{{{x_1}{x_2},{x_2}{x_3}, \ldots ,{x_m}{x_{m + 1}}, \ldots ,{x_{m + n - 1}}{x_{m + n}}} \right\}.
By ρ(k, m + n) we denote the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n. Let ρA1 (k, m + n), ρA2 (k, m + n) and ρA3 (k, m + n) denote the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n, with A1(xmxm+1), A2(xmxm+1) and A3(xmxm+1), respectively. In the case A1(xmxm+1) we have k possibilities of the position in the graph 𝒫m+n of the A1-monochromatic path that includes an edge xmxm+1. It may be each of the following paths
\matrix{{{x_{m + 1 - i}}{x_{m + 2 - i}} \ldots {x_{m + k + 1 - i}},\;} & {i = 0,1,\; \ldots k.} \cr}
For a fixed i = 0, 1, . . . k, the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n equals to the product of the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+1−i and the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−k+i. Therefore ρA1 (k, m + n) is equal to the sum of this products. In both cases A2(xmxm+1) or A3(xmxm+1) there are two possibilities of the position in the graph 𝒫m+n of the Ai-monochromatic path, i = 1, 2, that includes an edge xmxm+1. It can be any of the paths: xm−1xmxm+1 or xmxm+1xm+2. Consequently ρA2 (k, m + n) and ρA3 (k, m+n) both are equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m multiplied by the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−1 plus the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m−1 multiplied by the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n.
Thus from Theorem 3 we have
\matrix{{{\rho_{{A_2}}}\left({k,m + n} \right)} \hfill & {= {\rho_{{A_3}}}\left({k,m + n} \right)} \hfill \cr {} \hfill & {= {J^{\left(1 \right)}}\left({k,m} \right){J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,m - 1} \right){J^{\left(1 \right)}}\left({k,n} \right)} \hfill \cr}
and
{\rho_{{A_1}}}\left({k,m + n} \right) = \sum\limits_{i = 1}^k {{J^{\left(1 \right)}}\left({k,m + 1 - i} \right){J^{\left(1 \right)}}\left({k,n - k + i} \right)} .
Since ρ(k, m + n) = J(1)(k, m + n) and
\rho \left({k,m + n} \right) = {\rho_{{A_1}}}\left({k,m + n} \right) + {\rho_{{A_2}}}\left({k,m + n} \right) + {\rho_{{A_3}}}\left({k,m + n} \right),
then the assertion follows.
Putting k = 1 in Theorem 11 we obtain the well-known formula for the classical Jacobsthal numbers Jm+n = 2JmJn−1 + 2Jm−1Jn + JmJn = JmJn+1 + 2Jm−1Jn.
The following identity for the (2, k)-distance Jacobsthal numbers of the second kind can be deduced by Theorem 2 and Theorem 11.
Corollary 6
Let k ≥ 1, m ≥ k and n ≥ k be integers. Then
\matrix{{{J^{\left(2 \right)}}\left({k,m + n} \right)} \hfill & {= 2\left({\sum\limits_{j = 0}^{m - 1} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m - 1 - j} \right)}} \right){J^{\left(2 \right)}}\left({k,n} \right)} \hfill \cr {} \hfill & {\,\,\,\, + 2\left({\sum\limits_{j = 0}^{m - 1} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m - j} \right)}} \right){J^{\left(2 \right)}}\left({k,n - 1} \right)} \hfill \cr {} \hfill & {+ \mathop \sum \nolimits_{i = 1}^k (\sum\limits_{j = 0}^{m + 1 - i} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m + 1 - i - j} \right)){J^{\left(2 \right)}}\left({k,n - k + i} \right).}} \hfill \cr}
4.Matrix representations
Matrix representations of sequences give the possibility of deducing some properties of the terms of these sequences. For matrix generators of the Fibonacci numbers and the like, see [7] and [11].
In this section, we give matrix representations for the (2, k)-distance Jacobsthal numbers. Using these representations we obtain among other things Cassini-like formulas and some interesting identities for these numbers.
At the beginning, basing on the method used in [3], we introduce the matrix generator Mk for the numbers J(i)(k, n), i = 1, 2 where k ≥ 2. Let us recall the recurrence relation for these numbers:
{J^{\left(i \right)}}\left({k,n} \right) = {J^{\left(i \right)}}\left({k,n - k} \right) + 2{J^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,{\rm{for}}\,\,\,n \ge k + 1.
Let for a positive integer k ≥ 2, Mk be the matrix of the form [mlj]k×k where for a fixed 1 ≤ j ≤ k, a number m1j is the coefficient of J(i)(k, n − j) in the above recurrence formula. Moreover, for 2 ≤ s ≤ k we have
{m_{sj}} = \left\{{\matrix{1 \hfill & {{\rm{if}}\;j = l - 1,} \hfill \cr 0 \hfill & {{\rm{otherwise}}.} \hfill \cr}} \right.
According to this definition we obtain the following matrices for k = 2, 3, 4, . . .
\matrix{{{M_2} = \left[ {\matrix{0 \hfill & 3 \hfill \cr 1 \hfill & 0 \hfill \cr}} \right],} & {{M_3} = \left[ {\matrix{0 \hfill & 2 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right],} & {{M_4} = \left[ {\matrix{0 \hfill & 2 \hfill & 0 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right], \ldots ,} \cr}
and in general
{M_k} = \left[ {\matrix{0 \hfill & 2 \hfill & 0 \hfill & 0 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right].
Now, for a fixed integer k ≥ 2, we introduce the matrix
A_k^{\left(i \right)}
of initial conditions. It is the following matrix of order k:
A_k^{\left(i \right)} = \left[ {\matrix{{{J^{\left(i \right)}}\left({k,2k - 2} \right)} & {{J^{\left(i \right)}}\left({k,2k - 3} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,k} \right)} & {{J^{\left(i \right)}}\left({k,k - 1} \right)} \cr {{J^{\left(i \right)}}\left({k,2k - 3} \right)} & {{J^{\left(i \right)}}\left({k,2k - 4} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,k - 1} \right)} & {{J^{\left(i \right)}}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {{J^{\left(i \right)}}\left({k,k} \right)} & {{J^{\left(i \right)}}\left({k,k - 1} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,2} \right)} & {{J^{\left(i \right)}}\left({k,1} \right)} \cr {{J^{\left(i \right)}}\left({k,k - 1} \right)} & {{J^{\left(i \right)}}\left({k,k - 2} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,1} \right)} & {{J^{\left(i \right)}}\left({k,0} \right)} \cr}} \right],
where i = 1, 2, k ≥ 2.
Using the same method as in [3], we obtain the following result.
Theorem 12
Let k ≥ 2, n ≥ 1 be integers. Then for i = 1, 2 we have
{({M_k})^n} \cdot A_k^{\left(i \right)} = \left[ {\matrix{{{J^{\left(i \right)}}\left({k,n + 2k - 2} \right)} & {{J^{\left(i \right)}}\left({k,n + 2k - 3} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + k} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} \cr {{J^{\left(i \right)}}\left({k,n + 2k - 3} \right)} & {{J^{\left(i \right)}}\left({k,n + 2k - 4} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {{J^{\left(i \right)}}\left({k,n + k} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + 2} \right)} & {{J^{\left(i \right)}}\left({k,n + 1} \right)} \cr {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 2} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + 1} \right)} & {{J^{\left(i \right)}}\left({k,n} \right)} \cr}} \right].
Two next theorems will be helpful in formulating Cassini-like formulas for the (2, k)-distance Jacobsthal numbers J(i)(k, n).
Theorem 13
For all integers k ≥ 2 the following equality holds
\det \;{M_k} = \left\{{\matrix{{- 3} \hfill & {for\;k = 2,} \hfill \cr {{{(- 1)}^{k + 1}}} \hfill & {for\;k \ge 3.} \hfill \cr}} \right.
Proof
It is easy to see that
{M_2} = \left| {\matrix{0 & 3 \cr 1 & 0 \cr}} \right| = - 3
. For k ≥ 3 we calculate the determinant |Mk| using the Laplace expansion by the last column of the matrix Mk. This expansion gives
\det \;{M_k} = \left| {\matrix{0 & 2 & 0 & \ldots & 0 & 1 \cr 1 & 0 & 0 & \ldots & 0 & 0 \cr 0 & 1 & 0 & \ldots & 0 & 0 \cr \vdots & \vdots & \vdots & {} & \vdots & \vdots \cr 0 & 0 & 0 & \ldots & 0 & 0 \cr 0 & 0 & 0 & \ldots & 1 & 0 \cr}} \right| = {(- 1)^{k + 1}} \cdot \left| {\matrix{1 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & \ldots \hfill & 0 \hfill \cr \vdots \hfill & \vdots \hfill & {} \hfill & \vdots \hfill \cr 0 \hfill & 0 \hfill & {0 \ldots} \hfill & 1 \hfill \cr}} \right| = {(- 1)^{k + 1}}.
Thus the theorem is proved.
Theorem 14
Let k ≥ 2 be an integer. Then
(3)
\det \;A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}}
and
(4)
\det \;A_k^{\left(2 \right)} = \left\{{\matrix{{- 1} \hfill & {for\;k = 2,} \hfill \cr 0 \hfill & {for\;odd\;k,} \hfill \cr {2\left(1 \right)\;{1 \over 2}k} \hfill & {for\;even\;k > 2.} \hfill \cr}} \right.
Proof
Let k ≥ 2 be an integer. In the proof of equality (3) the auxiliary sequence
J_B^{\left(1 \right)}\left({k,n} \right)
will be very helpful. We define it as follows
J_B^{\left(1 \right)}\left({k,0} \right) = J_B^{\left(1 \right)}\left({k,1} \right) = \cdots = J_B^{\left(1 \right)}\left({k,k - 2} \right) = 0,\,\,\,\,\,\,\,J_B^{\left(1 \right)}\left({k,k - 1} \right) = 1
and
(5)
J_B^{\left(1 \right)}\left({k,n} \right) = J_B^{\left(1 \right)}\left({k,n - 2} \right) + 2J_B^{\left(1 \right)}\left({k,n - k} \right)\,\,\,\,\,{\rm for}\,\,\,\,\,n \ge k.
Now we define a matrix
B_k^{\left(1 \right)}
of order k, k ≥ 2, whose elements are the terms of the sequence
J_B^{\left(1 \right)}\left({k,\;n} \right)
:
B_k^{\left(1 \right)} = \left[ {\matrix{{J_B^{\left(1 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k} \right)} & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} \cr {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 4} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & {J_B^{\left(1 \right)}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(1 \right)}\left({k,k} \right)} & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,2} \right)} & {J_B^{\left(1 \right)}\left({k,1} \right)} \cr {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & {J_B^{\left(1 \right)}\left({k,k - 2} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,1} \right)} & {J_B^{\left(1 \right)}\left({k,0} \right)} \cr}} \right].
From the definition of the sequence
J_B^{\left(1 \right)}\left({k,\;n} \right)
it follows that
B_k^{\left(1 \right)} = \left[ {\matrix{{J_B^{\left(1 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k} \right)} & 1 \cr {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 4} \right)} & \ldots & 1 & 0 \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(1 \right)}\left({k,k} \right)} & 1 & \ldots & 0 & 0 \cr 1 & 0 & \ldots & 0 & 0 \cr}} \right].
Using k − 1 times the Laplace expansion by the last column we can calculate the determinant of the matrix
B_k^{\left(1 \right)}
as follows
\matrix{{{\det}\,B_k^{\left(1 \right)}} \hfill & {= {{(- 1)}^{k + 1}} \cdot {{(- 1)}^k} \cdots \cdot \cdot {{(- 1)}^3}} \hfill \cr {} \hfill & {= {{(- 1)}^{k - 1}} \cdot {{(- 1)}^{k - 2}} \cdots \cdot \cdot \left(1 \right)} \hfill \cr {} \hfill & {= {{(- 1)}^{1 + 2 + \cdots + \left({k - 1} \right)}} = {{(- 1)}^{{{k\left({k - 1} \right)} \over 2}}}.} \hfill \cr}
Using the recurrence formula (5) and definitions of matrices
A_k^{\left(1 \right)}
and
B_k^{\left(1 \right)}
one can prove that for k ≥ 2 the equality
A_k^{\left(1 \right)} = B_k^{\left(1 \right)}{(M_k^T)^{k - 2}}
holds where
M_k^T
denotes the transpose of the matrix Mk. Therefore by properties of determinants we obtain
\det A_k^{\left(1 \right)} = \det B_k^{\left(1 \right)} \cdot {(\det \;(M_k^T))^{k - 2}}.
Consequently, for k = 2 we have
{\det}A_k^{\left(1 \right)} = - 1
and for k ≥ 2 by Theorem 13 we get
\det A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}} \cdot {(- 1)^{\left({k + 1} \right)\left({k - 2} \right)}}.
Note that the expression (k + 1)(k − 2) is even for all integers k ≥ 3, hence
\det \,A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}}
which completes the proof of (3). For the proof of the equalities (4) we define a new sequence
J_B^{\left(2 \right)}\left({k,n} \right)
:
(6)
\matrix{{J_B^{\left(2 \right)}\left({k,0} \right) = J_B^{\left(2 \right)}\left({k,k - 1} \right) = 1,} \hfill \cr {J_B^{\left(2 \right)}\left({k,1} \right) = J_B^{\left(2 \right)}\left({k,2} \right) = \cdots = J_B^{\left(2 \right)}\left({k,k - 2} \right) = 0,} \hfill \cr {J_B^{\left(2 \right)}\left({k,n} \right) = J_B^{\left(2 \right)}\left({k,n - k} \right) + 2J_B^{\left(2 \right)}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,k > 2,\,\,n \ge k,} \hfill \cr}
and an auxiliary matrix
B_k^{\left(2 \right)}
of order k:
\matrix{{B_k^{\left(2 \right)}} \hfill & {= \left[ {\matrix{{J_B^{\left(2 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k} \right)} & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} \cr {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 4} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & {J_B^{\left(2 \right)}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(2 \right)}\left({k,k} \right)} & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,2} \right)} & {J_B^{\left(2 \right)}\left({k,1} \right)} \cr {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & {J_B^{\left(2 \right)}\left({k,k - 2} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,1} \right)} & {J_B^{\left(2 \right)}\left({k,0} \right)} \cr}} \right]} \hfill \cr {} \hfill & {= \left[ {\matrix{{J_B^{\left(2 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k} \right)} & 1 \cr {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 4} \right)} & \ldots & 1 & 0 \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(2 \right)}\left({k,k} \right)} & 1 & \ldots & 0 & 0 \cr 1 & 0 & \ldots & 0 & 1 \cr}} \right].} \hfill \cr}
By definitions of matrices
A_k^{\left(2 \right)}
and
B_k^{\left(2 \right)}
and by the recurrence formula (6) we can deduce the following relationship between
A_k^{\left(2 \right)}
and
B_k^{\left(2 \right)}
(7)
A_k^{\left(2 \right)} = B_k^{\left(2 \right)}{(M_k^T)^{k - 2}}
Using basic properties of determinants one can prove that
\det B_k^{\left(2 \right)} = \left\{{\matrix{0 \hfill & {{\rm{for}}\;{\rm{odd}}\;k,} \hfill \cr {2{{(- 1)}^{{1 \over 2}k}}} \hfill & {{\rm{for}}\;{\rm{even}}\;k.} \hfill \cr}} \right.
From this and from the formula (7) it follows immediately that
\det A_k^{\left(2 \right)} = 0
for odd k. For even k > 2 by applying Theorem 13 we get
\det A_k^{\left(2 \right)} = 2{(- 1)^{{1 \over 2}k}}{(- 1)^{\left({k + 1} \right)\left({k - 2} \right)}} = 2{(- 1)^{{1 \over 2}k}}.
Moreover we can see that for k = 2 we have
\det A_k^{\left(2 \right)} = \left[ {\matrix{1 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill \cr}} \right] = - 1
, thus the proof is completed.
As a consequence of Theorem 13 and Theorem 14 we obtain Cassini-like formulas for the (2, k)-distance Jacobsthal numbers.
Corollary 7
Let k ≥ 2, n ≥ 2 be integers and let i = 1, 2. Then
- (i)
\det \left[ {{{({M_k})}^n} \cdot A_k^{\left(1 \right)}} \right] = \left\{{\matrix{{{{(- 1)}^{n + 1}}{3^n}} \hfill & {for\;k = 2,} \hfill \cr {{{(- 1)}^{n\left({k + 1} \right) + {{k\left({k - 1} \right)} \over 2}}}} \hfill & {for\;k \ge 3,} \hfill \cr}} \right.
- (ii)
\det [{({M_k})^n} \cdot A_k^{\left(2 \right)}] = \left\{{\matrix{{- {{(- 3)}^n}} \hfill & {for\;k = 2,} \hfill \cr 0 \hfill & {for\;odd\;k,} \hfill \cr {2\left(1 \right){\;^{{3 \over 2}k + 1}}} \hfill & {for\;even\;k > 2.} \hfill \cr}} \right.
Theorem 15
Let k ≥ 3 and n ≥ 2k − 4 be integers. Then (Mk)n is of the form
\left[ {\matrix{{{J^{(1)}}\left({k,n + 1} \right)} & {{J^{(1)}}\left({k,n + 2} \right)} & {{J^{(1)}}\left({k,n - k + 3} \right)} & \ldots & {{J^{(1)}}\left({k,n} \right)} \cr {{J^{(1)}}\left({k,n} \right)} & {{J^{(1)}}\left({k,n + 1} \right)} & {{J^{(1)}}\left({k,n - k + 2} \right)} & \ldots & {{J^{(i)}}\left({k,n - 1} \right)} \cr \vdots & \vdots & \vdots & {} & \vdots \cr {{J^{(1)}}\left({k,n - k + 3} \right)} & {{J^{(1)}}\left({k,n - k + 4} \right)} & {{J^{(1)}}\left({k,n - 2k + 5} \right)} & \ldots & {{J^{(i)}}\left({k,n - k + 2} \right)} \cr {{J^{(1)}}\left({k,n - k + 2} \right)} & {{J^{(1)}}\left({k,n - k + 3} \right)} & {{J^{(1)}}\left({k,n - 2k + 4} \right)} & \ldots & {{J^{(i)}}\left({k,n - k + 1} \right)} \cr}} \right].
Proof
(By induction on n.) Let k ≥ 3 be a fixed integer. For n = 2k − 4 we can check the equation by inspection. Assume that the equation is true for all integers 2k − 3, 2k − 2, . . . , n. To show that it is true also for n + 1 it is enough to use the induction hypothesis, definition of J(1)(k, n) and the equation (Mk)n+1 = (Mk)nMk.
By Theorem 13 and Theorem 15 we obtain new Cassini-like formulas for the (2, k)-distance Jacobsthal numbers of the first kind J(1)(k, n).
Corollary 8
For all positive integers k, n, we have
\det {({M_k})^n} = \left\{{\matrix{{{{(- 3)}^n}} \hfill & {if\;k = 2\;and\;n \ge 1,} \hfill \cr {{{(- 1)}^{n\left({k + 1} \right)}}} \hfill & {if\;k \ge 3\;and\;n \ge 2k - 4.} \hfill \cr}} \right.
Note that from Corollary 8 it follows that for all integers n ≥ 2k − 4 the determinant of the matrix (Mk)n can be expressed as follows
(8)
\det {({M_k})^n} = \left\{{\matrix{{{{(- 1)}^n}} \hfill & {{\rm{if}}\;k\;{\rm{is\;even}},} \hfill \cr 1 \hfill & {{\rm{if}}\;k\;{\rm{is\;odd}}.} \hfill \cr}} \right.
For example putting k = 3 in (8) we obtain the following identity for the numbers J(1)(k, n).
Corollary 9
For every integer n ≥ 2 we have
\matrix{{{{({J^{\left(1 \right)}}(3,n + 1))}^2}{J^{\left(1 \right)}}(3,n - 2) + {{({J^{\left(1 \right)}}(3,n))}^3}} \hfill \cr {+ {{({J^{\left(1 \right)}}\left({3,n - 1} \right))}^2}{J^{\left(1 \right)}}\left({3,n + 2} \right) - 2{J^{\left(1 \right)}}\left({3,n - 1} \right){J^{\left(1 \right)}}\left({3,n} \right){J^{\left(1 \right)}}\left({3,n + 1} \right)} \hfill \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cr {- {J^{\left(1 \right)}}\left({3,n - 2} \right){J^{\left(1 \right)}}\left({3,n} \right){J^{\left(1 \right)}}\left({3,n + 2} \right) = 1.}}