Have a personal or library account? Click to login
On (k1A1, k2A2, k3A3)-Edge Colourings in Graphs and Generalized Jacobsthal Numbers Cover

On (k1A1, k2A2, k3A3)-Edge Colourings in Graphs and Generalized Jacobsthal Numbers

Open Access
|Apr 2025

Full Article

1.
Introduction and preliminary results

We use the standard definitions and notations of the graph theory, see [4] and [6]. Let us recall definitions of several very important sequences in the numbers theory. The Fibonacci sequence (Fn) is defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, for n ≥ 2. The Pell sequence (Pn) is also defined by recurrence relation Pn = 2Pn−1 + Pn−2, for n ≥ 2 with the initial conditions P0 = 0, P1 = 1. The Jacobsthal sequence (Jn) is defined recursively as follows Jn = Jn−1 + 2Jn−2, for n ≥ 2 with the initial conditions J0 = 0, J1 = 1. The first few Fibonacci, Pell and Jacobsthal numbers are 0, 1, 1, 2, 3, 5, 8, . . . , 0, 1, 2, 5, 12, 29, 70, . . . and 0, 1, 1, 3, 5, 11, 21, . . . , respectively.

In recent years many interesting generalizations of above mentioned classical sequences appeared in the mathematical literature. For example generalizations of the Pell numbers were introduced and studied in [8],[9],[10], and in [13], [15],[16],[17],[18], [20]. Moreover in [16] generalized Jacobsthal numbers were considered.

In this paper we study a new kind of generalization of Jacobsthal numbers in the distance sense, i.e., generalization by the k-th order linear recurrence relation. This concept of generalization of Jacobsthal numbers is inspired by results given in [1],[2],[3], [5], [15], [17] and [19] where generalizations of Fibonacci numbers, Lucas numbers and Pell numbers were introduced.

For fixed integers k ≥ 1 and n ≥ 0 by J(i)(k, n) we denote the (2, k)-distance Jacobsthal numbers of the i-th kind, i = 1, 2, i.e., numbers defined as follows (1) Jik,n=Jik,nk+2Jik,n2fornk+1 {J^{\left(i \right)}}\left({k,n} \right) = {J^{\left(i \right)}}\left({k,n - k} \right) + 2{J^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,\,n \ge k + 1 with initial conditions J(i)(k, 0) = 0, J(i)(k, 1) = 1 and for 2 ≤ nk: J1k,n=0ifniseven,2n12ifnisodd,J(2)(k,n)=2n12. {J^{\left(1 \right)}}\left({k,n} \right) = \left\{{\matrix{{\matrix{0 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{even}},} \hfill \cr {{2^{{{n - 1} \over 2}}}} \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{odd}},} \hfill \cr}} \hfill & {{J^{(2)}}(k,n) = {2^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor}}.} \hfill \cr}} \right.

In the following tables, we present several initial terms of the (2, k)-distance Jacobsthal sequences J(i)(k, n), i = 1, 2, for special values of k and n.

Table 1.

The (2, k)-distance Jacobsthal numbers of the first kind J(1)(k, n)

n0123456789101112131415
J(1)(1, n)011351121438517134168313652731546110923
J(1)(2, n)0103090270810243072902187
J(1)(3, n)010214491222335688145232378
J(1)(4, n)01020501202907001690408
J(1)(5, n)010204184161233327080152
J(1)(6, n)010204090200440970214
J(1)(7, n)01020408116432126432129
Table 2.

The (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n)

n0123456789101112131415
J(2)(1, n)011351121438517134168313652731546110923
J(2)(2, n)0113399272781812432437297292187
J(2)(3, n)01123581321345589144233377610
J(2)(4, n)0112255121229297070169169408
J(2)(5, n)011224591220284565102150232
J(2)(6, n)011224499202044449797214
J(2)(7, n)011224489172036447696161

From the definition of the (2, k)-distance Jacobsthal numbers it follows immediately that J(1)(1, n) = J(2)(1, n) = Jn. The numbers J(i)(2, n), i = 1, 2, are the elements of geometrical sequence, namely J1(2,n)=3n12 {J^{\left(1 \right)}}(2,n) = {3^{{{n - 1} \over 2}}} for odd n and J2(2,n)=3n12 {J^{\left(2 \right)}}(2,n) = {3^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor}} . Moreover if k is even and n is odd then J(2)(k, n) = J(2)(k, n + 1).

For k = 3 we have the following relationships between J(1)(k, n), J(2)(k, n) and the Fibonacci numbers Fn while for k = 4 we have their connections with the Pell numbers Pn.

Theorem 1

Let n be an integer. Then

  • (i)

    J(1)(3, n) = Fn−1 − (−1)n for n ≥ 1,

  • (ii)

    J(2)(3, n) = Fn for n ≥ 0,

  • (iii)

    J(1)(4, 2n − 1) = Pn for n ≥ 1,

  • (iv)

    J(2)(4, 2n − 1) = J(2)(4, 2n) = Pn for n ≥ 1.

Proof

In the proof of formula (i) we use the induction on n. For n = 1 or n = 2 the result follows immediately by the definitions of J(1)(k, n) and the Fibonacci numbers Fn.

Assume now that formula (i) is true for t = 1, 2, . . . , n with arbitrary n ≥ 2. We will prove that J(1)(3, n + 1) = Fn − (−1)n+1. By the induction hypothesis and the definitions of J(1)(k, n) and Fn, we have J13,n+1=J13,n2+2J13,n1=Fn3(1)n2+2(Fn2(1)n1)=2Fn2+Fn3+(1)n=Fn2+Fn1+(1n)=Fn(1)n+1, \matrix{{{J^{\left(1 \right)}}\left({3,n + 1} \right)} \hfill & {= {J^{\left(1 \right)}}\left({3,n - 2} \right) + 2{J^{\left(1 \right)}}\left({3,n - 1} \right)} \hfill \cr {} \hfill & {= {F_{n - 3}} - {{(- 1)}^{n - 2}} + 2({F_{n - 2}} - {{(- 1)}^{n - 1}})} \hfill \cr {} \hfill & {= 2{F_{n - 2}} + {F_{n - 3}} + {{(- 1)}^n} = {F_{n - 2}} + {F_{n - 1}} + (- {1^n})} \hfill \cr {} \hfill & {= {F_n} - {{(- 1)}^{n + 1}},} \hfill \cr} which ends the proof of (i). To prove (ii)–(iv) we can use the same method.

The following theorem shows the relation between numbers J(i)(k, n) for i = 1, 2.

Theorem 2

Let k ≥ 2, n ≥ 1 be integers. Then

  • (i)

    J(2)(k, n) = J(1)(k, n) + J(1)(k, n − 1),

  • (ii)

    J(1)k,n=i=0n(1)iJ2(k,ni) {J^{(1)}}\left({k,n} \right) = \sum\limits_{i = 0}^n {{{(- 1)}^i}{J^{\left(2 \right)}}(k,n - i)} .

Proof

In the proof of formula (i) we use the induction on n. Let n = 1, 2, . . . , k − 1. For k = 2 the result is obvious. If k ≥ 3 then we have (i) from initial conditions for J(1)(k, n) and J(2)(k, n). Assume now that nk − 1 and that the equality (i) holds for all integers ktn. We shall prove that it is true for the integer t = n + 1. Using (1) and the induction hypothesis, we obtain that J2k,n+1=J2k,n+1k+2J2k,n1=J1k,n+1k+J1k,nk+2J1k,n1+J1k,n2=J1k,n+1k+2J1k,n1+J1k,nk+2J1k,n2=J1k,n+1+J1k,n, \matrix{{{J^{\left(2 \right)}}\left({k,n + 1} \right) = {J^{\left(2 \right)}}\left({k,n + 1 - k} \right) + 2{J^{\left(2 \right)}}\left({k,n - 1} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1 - k} \right) + {J^{\left(1 \right)}}\left({k,n - k} \right) + 2\left({{J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,n - 2} \right)} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1 - k} \right) + 2{J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,n - k} \right) + 2{J^{\left(1 \right)}}\left({k,n - 2} \right)} \hfill \cr {\,\,\,\,\,\,\,\, = {J^{\left(1 \right)}}\left({k,n + 1} \right) + {J^{\left(1 \right)}}\left({k,n} \right),} \hfill \cr} which ends the proof of (i). The equality (ii) can be proved in the same manner.

In this paper we give the graph interpretations of considered two types of the (2, k)-distance Jacobsthal numbers with respect to a special edge colouring of a graph. Next, using these interpretations, we obtain several identities and direct formulas for them. We also give matrix representations for J(i)(k, n), i = 1, 2.

2.
Graph interpretations

Let us consider an edge coloured graph G where the set of colours is {A1, A2, A3}. For α ∈ {A1, A2, A3} a subgraph of G will be said α-monochromatic if all its edges are coloured by colour α. We will write α(xy) if the edge xy of the graph has the colour α.

In [17], Trojnar-Spelina and Włoch defined so called (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph G where ki ≥ 1, i = 1, 2, 3, are integers, as a generalization of the edge-colouring introduced and studied by Piejko and Włoch in [15]. Let us recall that the (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph G is defined in such a way that every maximal, with respect to the set inclusion, Ai-monochromatic subgraph of G, can be partitioned into edge-disjoint paths of the length ki, i = 1, 2, 3 (see [17]). Many interesting properties of (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths were given in [17]. For example, it was proved that the number of (kA1, kA2, 2A3)-edge colourings by monochromatic paths is closely related to (2, k)-distance Pell numbers of the i-th kind, i = 1, 2, defined recursively as follows Pik,n=2Pik,nk+Pik,n2fornk {P^{\left(i \right)}}\left({k,n} \right) = 2{P^{\left(i \right)}}\left({k,n - k} \right) + {P^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,\,n \ge k with initial conditions P(i)(k, 0) = 0, P(i)(k, 1) = 1 and for 2 ≤ nk − 1: P1k,n=0ifniseven,1ifnisodd,andP(2)(k,n)=1. {P^{\left(1 \right)}}\left({k,n} \right) = \left\{{\matrix{{\matrix{0 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{even}},} \hfill \cr 1 \hfill & {{\rm{if}}\,n\,{\rm{is}}\,{\rm{odd}},} \hfill \cr}} \hfill & {{\rm{and}}} \hfill & {{P^{(2)}}(k,n) = 1.} \hfill \cr}} \right.

In this section, we give graph interpretations for the (2, k)-distance Jacobsthal numbers J(i)(k, n) in terms of (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths with k1 = k, k ≥ 1 and k2 = k3 = 2. We will use standard notation 𝒫n for a path with n vertices.

Theorem 3

Let k ≥ 1, n ≥ 2 be integers. The number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n is equal to J(1)(k, n).

Proof

Let k ≥ 1, n ≥ 2 be integers and let V (𝒫n) = {x1, x2, . . . , xn} with the numbering of vertices in the natural fashion. Then E(𝒫n) = {x1x2, x2x3, . . . , xn−1xn}. The number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n will be denoted by σ(k, n). One can easy verify that σ(k, n) = J(1)(k, n) for n = 2, . . . , k + 2.

Assume now that nk + 3. Denote by σA1 (k, n), σA2 (k, n), σA3 (k, n), the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n in which the colour of the last edge is determined respectively as follows: A1(xn−1xn), A2(xn−1xn), A3(xn−1xn). It is clear that σA1 (k, n) is equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫nk and σA2 (k, n), σA3 (k, n) are equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−2. In other words σA1 (k, n) = σ(k, nk), σA2 (k, n) = σ(k, n − 2) and σA3 (k, n) = σ(k, n − 2). From the above we have σk,n=σA1k,n+σA2k,n+σA3k,n=σk,nk+2σk,n2. \sigma \left({k,n} \right) = {\sigma_{{A_1}}}\left({k,n} \right) + {\sigma_{{A_2}}}\left({k,n} \right) + {\sigma_{{A_3}}}\left({k,n} \right) = \sigma \left({k,n - k} \right) + 2\sigma \left({k,n - 2} \right). Taking into account the initial conditions we obtain that σ(k, n) = J(1)(k, n) for all n ≥ 2. The proof of Theorem 3 is completed.

Hence we obtain the following graph interpretation of Jacobsthal numbers.

Corollary 1

Let n ≥ 2 be an integer. The number of all (A1, 2A2, 2A3)-edge colourings of the graph 𝒫n is equal to Jn.

Before we give the graph interpretation for the (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n) we introduce a quasi (k1A1, k2A2, k3A3)-edge colouring by monochromatic paths in a graph 𝒫n. Let E(𝒫n) = {e1, e2, . . . , en−1} be numbered in the natural fashion. We say that the graph 𝒫n is a quasi (k1A1, k2A2, k3A3)-edge coloured by monochromatic paths if the last r edges of 𝒫n are uncoloured where 0 ≤ rt − 1, t = min{k1, k2, k3} and the subpath 𝒫 ⊂ 𝒫n induced by {e1, e2, . . . , enr−1} is (k1A1, k2A2, k3A3)-edge coloured by monochromatic paths.

From above immediately follows that (k1A1, k2A2, k3A3)-edge coloured 𝒫n is also quasi (k1A1, k2A2, k3A3)-edge coloured.

Using the same manner as that in the proof of Theorem 3 we can prove that the number of all quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n closely corresponds to the (2, k)-distance Jacobsthal numbers of the second kind J(2)(k, n). Namely we have

Theorem 4

Let k ≥ 1, n ≥ 2 be integers. The number of all quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n is equal to J(2)(k, n).

These graph interpretations will be used to derive the direct formulas for the (2, k)-distance Jacobsthal numbers J(i)(k, n), i = 1, 2.

Before that, we need to deduce certain preliminary results. Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Let pk(n, t) denote the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n such that there are exactly t monochromatic paths of the length 2 coloured by A2 or A3. This means that in such edge colouring 2t1 edges have colour A2, 2t2 edges have colour A3 where t1 + t2 = t and other n − 1 − 2t edges have colour A1.

Theorem 5

Let n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Then p1n,t=n1tt2t. {p_1}\left({n,t} \right) = \left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.

Proof

Let us consider the graph 𝒫n with the (A1, 2A2, 2A3)-edge colouring by monochromatic paths in which there are exactly t monochromatic paths of the length 2 coloured by the colour A2 or A3. This edge colouring is related to a certain partition of the set E(𝒫n) into t edge-disjoint Ai monochromatic paths of the length 2 for i = 2, 3 and n − 1 − 2t monochromatic paths of the length 1 for i = 1. We denote a number of all such partitions by δ(n, t). It is easy to observe that δ(n, t) equals to the number of all permutations with repetitions of n − 1 − t elements that are equal to 1 or 2 where the number 1 is repeated n − 1 − t times and the number 2 is repeated t times. Therefore, δn,t=Pn1tt,n12t \delta \left({n,t} \right) = P_{n - 1 - t}^{t,n - 1 - 2t} , where the symbol Pnn1,n2 P_n^{{n_1},{n_2}} denotes the number of all permutations with repetitions of the length n of two elements, where first of these elements is repeated n1 times, the second is repeated n2 times and n1 + n2 = n. Consequently we have δn,t=n1t!t!n12t!=n1tt. \delta \left({n,t} \right) = {{\left({n - 1 - t} \right)!} \over {t!\left({n - 1 - 2t} \right)!}} = \left({\matrix{{n - 1 - t} \cr t \cr}} \right). Every of this partitions generates 2t (A1, 2A2, 2A3)-edge colourings by monochromatic paths. Therefore, the desired result follows.

Theorem 6

Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers and let n12tkN{0} {{n - 1 - 2t} \over k} \in N \cup \{0\} . Then for s = 0, 1, . . . , n − 1 we have pk(n,t)=pksnsn12tk,t. {p_k}(n,t) = {p_{k - s}}\left({n - {{s\left({n - 1 - 2t} \right)} \over k},t} \right).

Proof

Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n in which there are exactly t monochromatic paths of the length 2 coloured by the colour A2 or A3. Consequently, there are exactly n12tk {{n - 1 - 2t} \over k} monochromatic paths of the length k coloured by A1 in this edge colouring. If every of these paths is shorted to the A1-monochromatic paths of the length ks, then we obtain a ((ks)A1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph Pnsn12tk {{\mathcal P}_{n - s{{n - 1 - 2t} \over k}}} , in which there are n12tk {{n - 1 - 2t} \over k} monochromatic paths of the length ks coloured by A1 and the number of monochromatic paths of the length 2 coloured by Ai, i = 2, 3, remains the same as in the starting edge colouring. Therefore the proof is completed.

Putting s = k − 1 in Theorem 6 we have pkn,t=p1nk1n12tk,t {p_k}\left({n,t} \right) = {p_1}\left({n - {{\left({k - 1} \right)\left({n - 1 - 2t} \right)} \over k},t} \right) and so using Theorem 5 we obtain the following

Corollary 2

Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers and let n12tkN{0} {{n - 1 - 2t} \over k} \in N \cup \{0\} . Then pk(n,t)=1k[n1+t(k2)]t2t. {p_k}(n,t) = \left({\matrix{{{1 \over k}[n - 1 + t(k - 2)]} \cr t \cr}} \right){2^{t}}.

Let us consider again such (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n, that there are exactly t monochromatic paths of the length 2 coloured by A2 or A3, i.e., in such edge colouring 2t1 edges have colour A2, 2t2 edges have colour A3 where t1 +t2 = t and other n−1−2t edges have colour A1. We can observe that such (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n exists if and only if a number n12tk {{n - 1 - 2t} \over k} is nonnegative integer. For given k ≥ 1 and n ≥ 2 we introduce the following notation: Ikn={tN{0}:n12tkN{0}}. I_k^n = \{t \in N \cup \{0\} :{{n - 1 - 2t} \over k} \in N \cup \{0\} \} .

Note that for example: I103=0,3 I_{10}^3 = \left\{{0,3} \right\} , I144= I_{14}^4 = \emptyset and I1n=0,1,2, , n12 I_1^n = \left\{{0,1,2,\; \ldots ,\;\left\lfloor {{{n - 1} \over 2}} \right\rfloor} \right\} for all positive integers n. Moreover, if Ikn I_k^n \ne \emptyset then pk(n, t) ≠ 0 for all tIkn t \in I_k^n and otherwise pk(n, t) = 0 for all t ≥ 0.

Now we are able to present the following direct formula for the numbers J(1)(k, n).

Theorem 7

Let k ≥ 1, n ≥ 1 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Then J1(k,n)=tIkn1k[n1+t(k2)]t2tifIkn {J^{\left(1 \right)}}(k,n) = \sum\limits_{t \in I_k^n} {\left({\matrix{{{1 \over k}[n - 1 + t(k - 2)]} \cr t \cr}} \right){2^t}\,\,\,\,\,if\,\,\,\,\,I_k^n \ne \emptyset} and J1k,n=0ifIkn=. {J^{\left(1 \right)}}\left({k,n} \right) = 0\,\,\,\,\,if\,\,\,\,\,I_k^n = \emptyset .

Proof

Using Theorem 3 we have that J(1)(k, n) is equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n. Therefore for given k ≥ 1, n ≥ 1 it can be expressed as follows J1(k,n)=tIknpkn,t. {J^{\left(1 \right)}}(k,n) = \sum\limits_{t \in I_k^n} {{p_k}\left({n,t} \right).} Let us recall that if Ikn I_k^n \ne \emptyset then pk(n, t) = 0 for all t ≥ 0 and therefore in this case the result follows. Otherwise, we have pk(n, t) ≠ 0 for all tIkn t \in I_k^n , so an application of Corollary 2 enables us to deduce the desired equality.

Putting k = 1 in Theorem 7, we obtain the following well-known direct formula for Jacobsthal numbers.

Corollary 3

Let n ≥ 1 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Then Jn=t=1n12n1tt2t. {J_n} = \sum\limits_{t = 1}^{\left\lfloor {{{n - 1} \over 2}} \right\rfloor} {\left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.}

To derive the direct formula for J(2)(k, n) we need new notations. Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. By qk(n, t) we denote the number of quasi (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n such that exactly t monochromatic paths are coloured by A2 or A3. Let us note that in this edge colouring the number of A1-monochromatic paths is equal to n12tk \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor and consequently q1(n, t) = p1(n, t) so by Theorem 5 we have (2) q1n,t=n1tt2t. {q_1}\left({n,t} \right) = \left({\matrix{{n - 1 - t} \cr t \cr}} \right){2^t}.

Theorem 8

Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers and sN. Then qkn,t=qs1+2t+n12tks,t. {q_k}\left({n,t} \right) = {q_s}\left({1 + 2t + \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor s,t} \right).

Proof

Let us consider the quasi (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n in which exactly t monochromatic paths of the length 2 have colour A2 or A3. Therefore there are n12tk \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor A1-monochromatic paths of the length k in this edge-colouring. If, for a given positive integer n, every of these paths is replaced by A1-monochromatic paths of the length s, then we obtain a quasi (sA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph Pn12tks {{\mathcal P}_{\left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor s}} in which the number of monochromatic paths of the length 2 coloured by Ai, i = 2, 3 remains the same as in the starting edge colouring. The proof is completed.

Putting s = 1 in Theorem 8 and using the relation (2) we obtain the following result

Corollary 4

Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Then qk(n,t)=t+n12ttt2t. {q_k}(n,t) = \left({\matrix{{t + \left\lfloor {{{n - 1 - 2t} \over t}} \right\rfloor} \cr t \cr}} \right){2^t}.

Let us note that quasi (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫n, such that exactly t monochromatic paths are coloured by A2 or A3, exists if and only if one of the numbers n12tk {{n - 1 - 2t} \over k} or n22tk {{n - 2 - 2t} \over k} is nonnegative integer. In order to deduce a direct formula for the (2, k)-distance Jacobsthal numbers of the second kind we introduce the following new notation: Tkn=tN{0}:n12tkN{0}orn22tkN{0}. T_k^n = \left\{{t \in N \cup \{0\} :{{n - 1 - 2t} \over k} \in N \cup \{0\} \,{\rm{or}}\,{{n - 2 - 2t} \over k} \in N \cup \{0\}} \right\}. Observe that for example T720=2,6,9 T_7^{20} = \left\{{2,6,9} \right\} and T1n=T2n=0,1,2, ,n12 T_1^n = T_2^n = \left\{{0,1,2,\; \ldots ,\left\lfloor {{{n - 1} \over 2}} \right\rfloor} \right\} for all positive integers n. Moreover, Tkn T_k^n \ne \emptyset for all positive integers k and n ≥ 2.

Now we can state the analogue of Theorem 7 for the numbers J(2)(k, n).

Theorem 9

Let k ≥ 1, n ≥ 2 and 0tn12 0 \le t \le \left\lfloor {{{n - 1} \over 2}} \right\rfloor be integers. Then J2k,n=tTknt+n12tkt2t. {J^{\left(2 \right)}}\left({k,n} \right) = \sum\limits_{t \in T_k^n} {\left({\matrix{{t + \left\lfloor {{{n - 1 - 2t} \over k}} \right\rfloor} \cr t \cr}} \right)} {2^t}.

Proof

As an immediate consequence of the graph interpretation of the numbers J(2)(k, n), given in Theorem 3, we obtain the following equality for k ≥ 1 and n ≥ 2: J2k,n=tTknqkk,n. {J^{\left(2 \right)}}\left({k,n} \right) = \sum\limits_{t \in T_k^n} {{q_k}\left({k,n} \right)} .

Corollary 4 makes it obvious that the desired formula holds.

3.
Identities

In this part we give the identities for the (2, k)-distance Jacobsthal numbers. For special values of parameters we can reduce them to the well-known identities for the classical Jacobsthal numbers.

Theorem 10

Let k ≥ 1, m ≥ 1, n ≥ 0 be integers and let n + k − 2 ≥ 0. Then for i = 1, 2 we have

  • (i)

    Jik,n+2i=1mJik,n2+ik=Jik,n+mk {J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) = {J^{\left(i \right)}}\left({k,n + mk} \right)} ,

  • (ii)

    2mJik,n+i=1m2miJik,nk+2i=Jik,n+2m {2^m}{J^{\left(i \right)}}\left({k,n} \right) + \sum\limits_{i = 1}^m {{2^{m - i}}{J^{\left(i \right)}}\left({k,n - k + 2i} \right) = {J^{\left(i \right)}}\left({k,n + 2m} \right)} .

Proof

In the proof of the part (i) we use the induction on m. If m = 1 then the equation is obvious. Assume that formula in (i) is true for an arbitrary m ≥ 1. We will prove that Jik,n+2i=1mJik,n2+ik=Jik,n+(m+1)k. {J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) = {J^{\left(i \right)}}\left({k,n + (m + 1)k} \right)} .

By the induction hypothesis and the definition of J(i)(k, n), we have Jik,n+2i=1m+1Jik,n2+ik=Jik,n+2i=1mJik,n2+ik+2Jik,n2+m+1k=Jik,n+mk+2Jik,n2+m+1k=Jik,n+m+1k, \matrix{{{J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^{m + 1} {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right)}} \hfill \cr {\,\,\,\,\,\, = {J^{\left(i \right)}}\left({k,n} \right) + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,n - 2 + ik} \right) + 2{J^{\left(i \right)}}\left({k,n - 2 + \left({m + 1} \right)k} \right)}} \hfill \cr {\,\,\,\,\,\, = {J^{\left(i \right)}}\left({k,n + mk} \right) + 2{J^{\left(i \right)}}\left({k,n - 2 + \left({m + 1} \right)k} \right) = {J^{\left(i \right)}}\left({k,n + \left({m + 1} \right)k} \right),} \hfill \cr} which ends the proof of (i). The identity (ii) can be proved by the same method.

Putting n = 1 in identity (i) of Theorem 10 we obtain

Corollary 5

Let k, n be positive integers and let i = 1, 2. Then 1+2i=1mJik,ik1=Jik,mk+1. 1 + 2\sum\limits_{i = 1}^m {{J^{\left(i \right)}}\left({k,ik - 1} \right) = {J^{\left(i \right)}}\left({k,mk + 1} \right).}

For k = 1 we obtain the well-known identity for the classical Jacobsthal numbers: 1+2i=1mJi1=Jm+1. 1 + 2\sum\limits_{i = 1}^m {{J_{i - 1}} = {J_{m + 1}}.}

Putting k = 1 and n = 0 or n = 1 respectively in Theorem 10, we obtain the well-known identities for the classical Jacobsthal numbers i=1m2miJ2i1=J2m,2m+i=1m2miJ2i=J2m+1. \sum\limits_{i = 1}^m {{2^{m - i}}{J_{2i - 1}} = {J_{2m}}} ,\,\,\,\,\,\,{2^m} + \sum\limits_{i = 1}^m {{2^{m - i}}{J_{2i}} = {J_{2m + 1}}} .

We can use the (kA1, 2A2, 2A3)-edge colouring of the path 𝒫n to obtain the following identity for the (2, k)-distance Jacobsthal numbers of the first kind.

Theorem 11

Let k ≥ 1, mk and nk be integers. Then J1k,m+n=2J1k,mJ1k,n1+2J1k,m1J1k,n+i=1kJ1k,m+1iJ1k,nk+i. \matrix{{{J^{\left(1 \right)}}\left({k,m + n} \right) = 2{J^{\left(1 \right)}}\left({k,m} \right){J^{\left(1 \right)}}\left({k,n - 1} \right) + 2{J^{\left(1 \right)}}\left({k,m - 1} \right){J^{\left(1 \right)}}\left({k,n} \right)} \cr {+ \sum\limits_{i = 1}^k {{J^{\left(1 \right)}}\left({k,m + 1 - i} \right){J^{\left(1 \right)}}\left({k,n - k + i} \right).}} \cr}

Proof

Consider the (kA1, 2A2, 2A3)-edge colouring by monochromatic paths of the graph 𝒫m+n. Let VPm+n=x1,x2,,xm,xm+1,,xm+n V\left({{{\mathcal P}_{m + n}}} \right) = \left\{{{x_1},{x_2}, \ldots ,{x_m},{x_{m + 1}}, \ldots ,{x_{m + n}}} \right\} be the set of vertices of this graph with the numbering in the natural fashion. Then EPm+n=x1x2,x2x3,,xmxm+1,,xm+n1xm+n. E\left({{{\mathcal P}_{m + n}}} \right) = \left\{{{x_1}{x_2},{x_2}{x_3}, \ldots ,{x_m}{x_{m + 1}}, \ldots ,{x_{m + n - 1}}{x_{m + n}}} \right\}. By ρ(k, m + n) we denote the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n. Let ρA1 (k, m + n), ρA2 (k, m + n) and ρA3 (k, m + n) denote the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n, with A1(xmxm+1), A2(xmxm+1) and A3(xmxm+1), respectively. In the case A1(xmxm+1) we have k possibilities of the position in the graph 𝒫m+n of the A1-monochromatic path that includes an edge xmxm+1. It may be each of the following paths xm+1ixm+2ixm+k+1i, i=0,1, k. \matrix{{{x_{m + 1 - i}}{x_{m + 2 - i}} \ldots {x_{m + k + 1 - i}},\;} & {i = 0,1,\; \ldots k.} \cr} For a fixed i = 0, 1, . . . k, the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+n equals to the product of the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m+1−i and the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫nk+i. Therefore ρA1 (k, m + n) is equal to the sum of this products. In both cases A2(xmxm+1) or A3(xmxm+1) there are two possibilities of the position in the graph 𝒫m+n of the Ai-monochromatic path, i = 1, 2, that includes an edge xmxm+1. It can be any of the paths: xm−1xmxm+1 or xmxm+1xm+2. Consequently ρA2 (k, m + n) and ρA3 (k, m+n) both are equal to the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m multiplied by the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n−1 plus the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫m−1 multiplied by the number of all (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of the graph 𝒫n.

Thus from Theorem 3 we have ρA2k,m+n=ρA3k,m+n=J1k,mJ1k,n1+J1k,m1J1k,n \matrix{{{\rho_{{A_2}}}\left({k,m + n} \right)} \hfill & {= {\rho_{{A_3}}}\left({k,m + n} \right)} \hfill \cr {} \hfill & {= {J^{\left(1 \right)}}\left({k,m} \right){J^{\left(1 \right)}}\left({k,n - 1} \right) + {J^{\left(1 \right)}}\left({k,m - 1} \right){J^{\left(1 \right)}}\left({k,n} \right)} \hfill \cr} and ρA1k,m+n=i=1kJ1k,m+1iJ1k,nk+i. {\rho_{{A_1}}}\left({k,m + n} \right) = \sum\limits_{i = 1}^k {{J^{\left(1 \right)}}\left({k,m + 1 - i} \right){J^{\left(1 \right)}}\left({k,n - k + i} \right)} . Since ρ(k, m + n) = J(1)(k, m + n) and ρk,m+n=ρA1k,m+n+ρA2k,m+n+ρA3k,m+n, \rho \left({k,m + n} \right) = {\rho_{{A_1}}}\left({k,m + n} \right) + {\rho_{{A_2}}}\left({k,m + n} \right) + {\rho_{{A_3}}}\left({k,m + n} \right), then the assertion follows.

Putting k = 1 in Theorem 11 we obtain the well-known formula for the classical Jacobsthal numbers Jm+n = 2JmJn−1 + 2Jm−1Jn + JmJn = JmJn+1 + 2Jm−1Jn.

The following identity for the (2, k)-distance Jacobsthal numbers of the second kind can be deduced by Theorem 2 and Theorem 11.

Corollary 6

Let k ≥ 1, mk and nk be integers. Then J2k,m+n=2j=0m1(1)jJ2k,m1jJ2k,n+2j=0m1(1)jJ2k,mjJ2k,n1+i=1k(j=0m+1i(1)jJ2k,m+1ij)J2k,nk+i. \matrix{{{J^{\left(2 \right)}}\left({k,m + n} \right)} \hfill & {= 2\left({\sum\limits_{j = 0}^{m - 1} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m - 1 - j} \right)}} \right){J^{\left(2 \right)}}\left({k,n} \right)} \hfill \cr {} \hfill & {\,\,\,\, + 2\left({\sum\limits_{j = 0}^{m - 1} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m - j} \right)}} \right){J^{\left(2 \right)}}\left({k,n - 1} \right)} \hfill \cr {} \hfill & {+ \mathop \sum \nolimits_{i = 1}^k (\sum\limits_{j = 0}^{m + 1 - i} {{{(- 1)}^j}{J^{\left(2 \right)}}\left({k,m + 1 - i - j} \right)){J^{\left(2 \right)}}\left({k,n - k + i} \right).}} \hfill \cr}

4.
Matrix representations

Matrix representations of sequences give the possibility of deducing some properties of the terms of these sequences. For matrix generators of the Fibonacci numbers and the like, see [7] and [11].

In this section, we give matrix representations for the (2, k)-distance Jacobsthal numbers. Using these representations we obtain among other things Cassini-like formulas and some interesting identities for these numbers.

At the beginning, basing on the method used in [3], we introduce the matrix generator Mk for the numbers J(i)(k, n), i = 1, 2 where k ≥ 2. Let us recall the recurrence relation for these numbers: Jik,n=Jik,nk+2Jik,n2fornk+1. {J^{\left(i \right)}}\left({k,n} \right) = {J^{\left(i \right)}}\left({k,n - k} \right) + 2{J^{\left(i \right)}}\left({k,n - 2} \right)\,\,\,{\rm{for}}\,\,\,n \ge k + 1.

Let for a positive integer k ≥ 2, Mk be the matrix of the form [mlj]k×k where for a fixed 1 ≤ jk, a number m1j is the coefficient of J(i)(k, nj) in the above recurrence formula. Moreover, for 2 ≤ sk we have msj=1if j=l1,0otherwise. {m_{sj}} = \left\{{\matrix{1 \hfill & {{\rm{if}}\;j = l - 1,} \hfill \cr 0 \hfill & {{\rm{otherwise}}.} \hfill \cr}} \right.

According to this definition we obtain the following matrices for k = 2, 3, 4, . . . M2=0310,M3=021100010,M4=0201100001000010,, \matrix{{{M_2} = \left[ {\matrix{0 \hfill & 3 \hfill \cr 1 \hfill & 0 \hfill \cr}} \right],} & {{M_3} = \left[ {\matrix{0 \hfill & 2 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right],} & {{M_4} = \left[ {\matrix{0 \hfill & 2 \hfill & 0 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right], \ldots ,} \cr} and in general Mk=0200110000010000000000010. {M_k} = \left[ {\matrix{0 \hfill & 2 \hfill & 0 \hfill & 0 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \cr 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill \cr}} \right].

Now, for a fixed integer k ≥ 2, we introduce the matrix Aki A_k^{\left(i \right)} of initial conditions. It is the following matrix of order k: Aki=Jik,2k2Jik,2k3Jik,kJik,k1Jik,2k3Jik,2k4Jik,k1Jik,k2Jik,kJik,k1Jik,2Jik,1Jik,k1Jik,k2Jik,1Jik,0, A_k^{\left(i \right)} = \left[ {\matrix{{{J^{\left(i \right)}}\left({k,2k - 2} \right)} & {{J^{\left(i \right)}}\left({k,2k - 3} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,k} \right)} & {{J^{\left(i \right)}}\left({k,k - 1} \right)} \cr {{J^{\left(i \right)}}\left({k,2k - 3} \right)} & {{J^{\left(i \right)}}\left({k,2k - 4} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,k - 1} \right)} & {{J^{\left(i \right)}}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {{J^{\left(i \right)}}\left({k,k} \right)} & {{J^{\left(i \right)}}\left({k,k - 1} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,2} \right)} & {{J^{\left(i \right)}}\left({k,1} \right)} \cr {{J^{\left(i \right)}}\left({k,k - 1} \right)} & {{J^{\left(i \right)}}\left({k,k - 2} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,1} \right)} & {{J^{\left(i \right)}}\left({k,0} \right)} \cr}} \right], where i = 1, 2, k ≥ 2.

Using the same method as in [3], we obtain the following result.

Theorem 12

Let k ≥ 2, n ≥ 1 be integers. Then for i = 1, 2 we have (Mk)nAki=Jik,n+2k2Jik,n+2k3Jik,n+kJik,n+k1Jik,n+2k3Jik,n+2k4Jik,n+k1Jik,n+k2Jik,n+kJik,n+k1Jik,n+2Jik,n+1Jik,n+k1Jik,n+k2Jik,n+1Jik,n. {({M_k})^n} \cdot A_k^{\left(i \right)} = \left[ {\matrix{{{J^{\left(i \right)}}\left({k,n + 2k - 2} \right)} & {{J^{\left(i \right)}}\left({k,n + 2k - 3} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + k} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} \cr {{J^{\left(i \right)}}\left({k,n + 2k - 3} \right)} & {{J^{\left(i \right)}}\left({k,n + 2k - 4} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {{J^{\left(i \right)}}\left({k,n + k} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + 2} \right)} & {{J^{\left(i \right)}}\left({k,n + 1} \right)} \cr {{J^{\left(i \right)}}\left({k,n + k - 1} \right)} & {{J^{\left(i \right)}}\left({k,n + k - 2} \right)} & \ldots & {{J^{\left(i \right)}}\left({k,n + 1} \right)} & {{J^{\left(i \right)}}\left({k,n} \right)} \cr}} \right].

Two next theorems will be helpful in formulating Cassini-like formulas for the (2, k)-distance Jacobsthal numbers J(i)(k, n).

Theorem 13

For all integers k ≥ 2 the following equality holds det Mk=3for k=2,(1)k+1for k3. \det \;{M_k} = \left\{{\matrix{{- 3} \hfill & {for\;k = 2,} \hfill \cr {{{(- 1)}^{k + 1}}} \hfill & {for\;k \ge 3.} \hfill \cr}} \right.

Proof

It is easy to see that M2=0310=3 {M_2} = \left| {\matrix{0 & 3 \cr 1 & 0 \cr}} \right| = - 3 . For k ≥ 3 we calculate the determinant |Mk| using the Laplace expansion by the last column of the matrix Mk. This expansion gives det Mk=0200110000010000000000010=(1)k+11000100001=(1)k+1. \det \;{M_k} = \left| {\matrix{0 & 2 & 0 & \ldots & 0 & 1 \cr 1 & 0 & 0 & \ldots & 0 & 0 \cr 0 & 1 & 0 & \ldots & 0 & 0 \cr \vdots & \vdots & \vdots & {} & \vdots & \vdots \cr 0 & 0 & 0 & \ldots & 0 & 0 \cr 0 & 0 & 0 & \ldots & 1 & 0 \cr}} \right| = {(- 1)^{k + 1}} \cdot \left| {\matrix{1 \hfill & 0 \hfill & \ldots \hfill & 0 \hfill \cr 0 \hfill & 1 \hfill & \ldots \hfill & 0 \hfill \cr \vdots \hfill & \vdots \hfill & {} \hfill & \vdots \hfill \cr 0 \hfill & 0 \hfill & {0 \ldots} \hfill & 1 \hfill \cr}} \right| = {(- 1)^{k + 1}}.

Thus the theorem is proved.

Theorem 14

Let k ≥ 2 be an integer. Then (3) det Ak1=(1)kk12 \det \;A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}} and (4) det Ak2=1for k=2,0for odd k,21 12kfor even k>2. \det \;A_k^{\left(2 \right)} = \left\{{\matrix{{- 1} \hfill & {for\;k = 2,} \hfill \cr 0 \hfill & {for\;odd\;k,} \hfill \cr {2\left(1 \right)\;{1 \over 2}k} \hfill & {for\;even\;k > 2.} \hfill \cr}} \right.

Proof

Let k ≥ 2 be an integer. In the proof of equality (3) the auxiliary sequence JB1k,n J_B^{\left(1 \right)}\left({k,n} \right) will be very helpful. We define it as follows JB1k,0=JB1k,1==JB1k,k2=0,JB1k,k1=1 J_B^{\left(1 \right)}\left({k,0} \right) = J_B^{\left(1 \right)}\left({k,1} \right) = \cdots = J_B^{\left(1 \right)}\left({k,k - 2} \right) = 0,\,\,\,\,\,\,\,J_B^{\left(1 \right)}\left({k,k - 1} \right) = 1 and (5) JB1k,n=JB1k,n2+2JB1k,nkfornk. J_B^{\left(1 \right)}\left({k,n} \right) = J_B^{\left(1 \right)}\left({k,n - 2} \right) + 2J_B^{\left(1 \right)}\left({k,n - k} \right)\,\,\,\,\,{\rm for}\,\,\,\,\,n \ge k. Now we define a matrix Bk1 B_k^{\left(1 \right)} of order k, k ≥ 2, whose elements are the terms of the sequence JB1k, n J_B^{\left(1 \right)}\left({k,\;n} \right) : Bk1=JB1k,2k2JB1k,2k3JB1k,kJB1k,k1JB1k,2k3JB1k,2k4JB1k,k1JB1k,k2JB1k,kJB1k,k1JB1k,2JB1k,1JB1k,k1JB1k,k2JB1k,1JB1k,0. B_k^{\left(1 \right)} = \left[ {\matrix{{J_B^{\left(1 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k} \right)} & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} \cr {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 4} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & {J_B^{\left(1 \right)}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(1 \right)}\left({k,k} \right)} & {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,2} \right)} & {J_B^{\left(1 \right)}\left({k,1} \right)} \cr {J_B^{\left(1 \right)}\left({k,k - 1} \right)} & {J_B^{\left(1 \right)}\left({k,k - 2} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,1} \right)} & {J_B^{\left(1 \right)}\left({k,0} \right)} \cr}} \right]. From the definition of the sequence JB1k, n J_B^{\left(1 \right)}\left({k,\;n} \right) it follows that Bk1=JB1k,2k2JB1k,2k3JB1k,k1JB1k,2k3JB1k,2k410JB1k,k1001000. B_k^{\left(1 \right)} = \left[ {\matrix{{J_B^{\left(1 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(1 \right)}\left({k,k} \right)} & 1 \cr {J_B^{\left(1 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(1 \right)}\left({k,2k - 4} \right)} & \ldots & 1 & 0 \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(1 \right)}\left({k,k} \right)} & 1 & \ldots & 0 & 0 \cr 1 & 0 & \ldots & 0 & 0 \cr}} \right]. Using k − 1 times the Laplace expansion by the last column we can calculate the determinant of the matrix Bk1 B_k^{\left(1 \right)} as follows detBk1=(1)k+1(1)k(1)3=(1)k1(1)k21=(1)1+2++k1=(1)kk12. \matrix{{{\det}\,B_k^{\left(1 \right)}} \hfill & {= {{(- 1)}^{k + 1}} \cdot {{(- 1)}^k} \cdots \cdot \cdot {{(- 1)}^3}} \hfill \cr {} \hfill & {= {{(- 1)}^{k - 1}} \cdot {{(- 1)}^{k - 2}} \cdots \cdot \cdot \left(1 \right)} \hfill \cr {} \hfill & {= {{(- 1)}^{1 + 2 + \cdots + \left({k - 1} \right)}} = {{(- 1)}^{{{k\left({k - 1} \right)} \over 2}}}.} \hfill \cr} Using the recurrence formula (5) and definitions of matrices Ak1 A_k^{\left(1 \right)} and Bk1 B_k^{\left(1 \right)} one can prove that for k ≥ 2 the equality Ak1=Bk1(MkT)k2 A_k^{\left(1 \right)} = B_k^{\left(1 \right)}{(M_k^T)^{k - 2}} holds where MkT M_k^T denotes the transpose of the matrix Mk. Therefore by properties of determinants we obtain detAk1=detBk1(det (MkT))k2. \det A_k^{\left(1 \right)} = \det B_k^{\left(1 \right)} \cdot {(\det \;(M_k^T))^{k - 2}}.

Consequently, for k = 2 we have det Ak1=1 {\det}A_k^{\left(1 \right)} = - 1 and for k ≥ 2 by Theorem 13 we get detAk1=(1)kk12(1)k+1k2. \det A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}} \cdot {(- 1)^{\left({k + 1} \right)\left({k - 2} \right)}}. Note that the expression (k + 1)(k − 2) is even for all integers k ≥ 3, hence detAk1=(1)kk12 \det \,A_k^{\left(1 \right)} = {(- 1)^{{{k\left({k - 1} \right)} \over 2}}} which completes the proof of (3). For the proof of the equalities (4) we define a new sequence JB2k,n J_B^{\left(2 \right)}\left({k,n} \right) : (6) JB2k,0=JB2k,k1=1,JB2k,1=JB2k,2==JB2k,k2=0,JB2k,n=JB2k,nk+2JB2k,n2fork>2,nk, \matrix{{J_B^{\left(2 \right)}\left({k,0} \right) = J_B^{\left(2 \right)}\left({k,k - 1} \right) = 1,} \hfill \cr {J_B^{\left(2 \right)}\left({k,1} \right) = J_B^{\left(2 \right)}\left({k,2} \right) = \cdots = J_B^{\left(2 \right)}\left({k,k - 2} \right) = 0,} \hfill \cr {J_B^{\left(2 \right)}\left({k,n} \right) = J_B^{\left(2 \right)}\left({k,n - k} \right) + 2J_B^{\left(2 \right)}\left({k,n - 2} \right)\,\,\,\,\,{\rm{for}}\,\,\,\,k > 2,\,\,n \ge k,} \hfill \cr} and an auxiliary matrix Bk2 B_k^{\left(2 \right)} of order k: Bk(2)=[JB(2)(k,2k2)JB(2)(k,2k3)JB(2)(k,k)JB(2)(k,k1)JB(2)(k,2k3)JB(2)(k,2k4)JB(2)(k,k1)JB(2)(k,k2)JB(2)(k,k)JB(2)(k,k1)JB(2)(k,2)JB(2)(k,1)JB(2)(k,k1)JB(2)(k,k2)JB(2)(k,1)JB(2)(k,0)]=[JB(2)(k,2k2)JB(2)(k,2k3)JB(2)(k,k)1JB(2)(k,2k3)JB(2)(k,2k4)10JB(2)(k,k)1001001]. \matrix{{B_k^{\left(2 \right)}} \hfill & {= \left[ {\matrix{{J_B^{\left(2 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k} \right)} & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} \cr {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 4} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & {J_B^{\left(2 \right)}\left({k,k - 2} \right)} \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(2 \right)}\left({k,k} \right)} & {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,2} \right)} & {J_B^{\left(2 \right)}\left({k,1} \right)} \cr {J_B^{\left(2 \right)}\left({k,k - 1} \right)} & {J_B^{\left(2 \right)}\left({k,k - 2} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,1} \right)} & {J_B^{\left(2 \right)}\left({k,0} \right)} \cr}} \right]} \hfill \cr {} \hfill & {= \left[ {\matrix{{J_B^{\left(2 \right)}\left({k,2k - 2} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & \ldots & {J_B^{\left(2 \right)}\left({k,k} \right)} & 1 \cr {J_B^{\left(2 \right)}\left({k,2k - 3} \right)} & {J_B^{\left(2 \right)}\left({k,2k - 4} \right)} & \ldots & 1 & 0 \cr \vdots & \vdots & {} & \vdots & \vdots \cr {J_B^{\left(2 \right)}\left({k,k} \right)} & 1 & \ldots & 0 & 0 \cr 1 & 0 & \ldots & 0 & 1 \cr}} \right].} \hfill \cr} By definitions of matrices Ak2 A_k^{\left(2 \right)} and Bk2 B_k^{\left(2 \right)} and by the recurrence formula (6) we can deduce the following relationship between Ak2 A_k^{\left(2 \right)} and Bk2 B_k^{\left(2 \right)} (7) Ak2=Bk2(MkT)k2 A_k^{\left(2 \right)} = B_k^{\left(2 \right)}{(M_k^T)^{k - 2}} Using basic properties of determinants one can prove that detBk2=0for odd k,2(1)12kfor even k. \det B_k^{\left(2 \right)} = \left\{{\matrix{0 \hfill & {{\rm{for}}\;{\rm{odd}}\;k,} \hfill \cr {2{{(- 1)}^{{1 \over 2}k}}} \hfill & {{\rm{for}}\;{\rm{even}}\;k.} \hfill \cr}} \right. From this and from the formula (7) it follows immediately that detAk2=0 \det A_k^{\left(2 \right)} = 0 for odd k. For even k > 2 by applying Theorem 13 we get detAk2=2(1)12k(1)k+1k2=2(1)12k. \det A_k^{\left(2 \right)} = 2{(- 1)^{{1 \over 2}k}}{(- 1)^{\left({k + 1} \right)\left({k - 2} \right)}} = 2{(- 1)^{{1 \over 2}k}}. Moreover we can see that for k = 2 we have detAk2=1110=1 \det A_k^{\left(2 \right)} = \left[ {\matrix{1 \hfill & 1 \hfill \cr 1 \hfill & 0 \hfill \cr}} \right] = - 1 , thus the proof is completed.

As a consequence of Theorem 13 and Theorem 14 we obtain Cassini-like formulas for the (2, k)-distance Jacobsthal numbers.

Corollary 7

Let k ≥ 2, n ≥ 2 be integers and let i = 1, 2. Then

  • (i)

    det(Mk)nAk1=(1)n+13nfor k=2,(1)nk+1+kk12for k3, \det \left[ {{{({M_k})}^n} \cdot A_k^{\left(1 \right)}} \right] = \left\{{\matrix{{{{(- 1)}^{n + 1}}{3^n}} \hfill & {for\;k = 2,} \hfill \cr {{{(- 1)}^{n\left({k + 1} \right) + {{k\left({k - 1} \right)} \over 2}}}} \hfill & {for\;k \ge 3,} \hfill \cr}} \right.

  • (ii)

    det[(Mk)nAk2]=(3)nfor k=2,0for odd k,21 32k+1for even k>2. \det [{({M_k})^n} \cdot A_k^{\left(2 \right)}] = \left\{{\matrix{{- {{(- 3)}^n}} \hfill & {for\;k = 2,} \hfill \cr 0 \hfill & {for\;odd\;k,} \hfill \cr {2\left(1 \right){\;^{{3 \over 2}k + 1}}} \hfill & {for\;even\;k > 2.} \hfill \cr}} \right.

Theorem 15

Let k ≥ 3 and n ≥ 2k − 4 be integers. Then (Mk)n is of the form J(1)k,n+1J(1)k,n+2J(1)k,nk+3J(1)k,nJ(1)k,nJ(1)k,n+1J(1)k,nk+2J(i)k,n1J(1)k,nk+3J(1)k,nk+4J(1)k,n2k+5J(i)k,nk+2J(1)k,nk+2J(1)k,nk+3J(1)k,n2k+4J(i)k,nk+1. \left[ {\matrix{{{J^{(1)}}\left({k,n + 1} \right)} & {{J^{(1)}}\left({k,n + 2} \right)} & {{J^{(1)}}\left({k,n - k + 3} \right)} & \ldots & {{J^{(1)}}\left({k,n} \right)} \cr {{J^{(1)}}\left({k,n} \right)} & {{J^{(1)}}\left({k,n + 1} \right)} & {{J^{(1)}}\left({k,n - k + 2} \right)} & \ldots & {{J^{(i)}}\left({k,n - 1} \right)} \cr \vdots & \vdots & \vdots & {} & \vdots \cr {{J^{(1)}}\left({k,n - k + 3} \right)} & {{J^{(1)}}\left({k,n - k + 4} \right)} & {{J^{(1)}}\left({k,n - 2k + 5} \right)} & \ldots & {{J^{(i)}}\left({k,n - k + 2} \right)} \cr {{J^{(1)}}\left({k,n - k + 2} \right)} & {{J^{(1)}}\left({k,n - k + 3} \right)} & {{J^{(1)}}\left({k,n - 2k + 4} \right)} & \ldots & {{J^{(i)}}\left({k,n - k + 1} \right)} \cr}} \right].

Proof

(By induction on n.) Let k ≥ 3 be a fixed integer. For n = 2k − 4 we can check the equation by inspection. Assume that the equation is true for all integers 2k − 3, 2k − 2, . . . , n. To show that it is true also for n + 1 it is enough to use the induction hypothesis, definition of J(1)(k, n) and the equation (Mk)n+1 = (Mk)nMk.

By Theorem 13 and Theorem 15 we obtain new Cassini-like formulas for the (2, k)-distance Jacobsthal numbers of the first kind J(1)(k, n).

Corollary 8

For all positive integers k, n, we have det(Mk)n=(3)nif k=2 and n1,(1)nk+1if k3 and n2k4. \det {({M_k})^n} = \left\{{\matrix{{{{(- 3)}^n}} \hfill & {if\;k = 2\;and\;n \ge 1,} \hfill \cr {{{(- 1)}^{n\left({k + 1} \right)}}} \hfill & {if\;k \ge 3\;and\;n \ge 2k - 4.} \hfill \cr}} \right.

Note that from Corollary 8 it follows that for all integers n ≥ 2k − 4 the determinant of the matrix (Mk)n can be expressed as follows (8) det(Mk)n=(1)nif k is even,1if k is odd. \det {({M_k})^n} = \left\{{\matrix{{{{(- 1)}^n}} \hfill & {{\rm{if}}\;k\;{\rm{is\;even}},} \hfill \cr 1 \hfill & {{\rm{if}}\;k\;{\rm{is\;odd}}.} \hfill \cr}} \right. For example putting k = 3 in (8) we obtain the following identity for the numbers J(1)(k, n).

Corollary 9

For every integer n ≥ 2 we have (J1(3,n+1))2J1(3,n2)+(J1(3,n))3+(J13,n1)2J13,n+22J13,n1J13,nJ13,n+1J13,n2J13,nJ13,n+2=1. \matrix{{{{({J^{\left(1 \right)}}(3,n + 1))}^2}{J^{\left(1 \right)}}(3,n - 2) + {{({J^{\left(1 \right)}}(3,n))}^3}} \hfill \cr {+ {{({J^{\left(1 \right)}}\left({3,n - 1} \right))}^2}{J^{\left(1 \right)}}\left({3,n + 2} \right) - 2{J^{\left(1 \right)}}\left({3,n - 1} \right){J^{\left(1 \right)}}\left({3,n} \right){J^{\left(1 \right)}}\left({3,n + 1} \right)} \hfill \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cr {- {J^{\left(1 \right)}}\left({3,n - 2} \right){J^{\left(1 \right)}}\left({3,n} \right){J^{\left(1 \right)}}\left({3,n + 2} \right) = 1.}}

5.
Concluding remarks

The interpretation of the (2, k)-distance Jacobsthal numbers with respect to the number of (kA1, 2A2, 2A3)-edge colourings by monochromatic paths of some graphs gives the motivation for studying different kinds of (a1A1, a2A2, a3A3)-edge colourings of special graphs. For an arbitrary positive integer k some interesting results connected with the number of (A1, A2, kA3)-edge colourings, ((k − 1)A1, (k − 1)A2, kA3)-edge colourings and (kA1, kA2, 2A3)-edge colourings of some trees are recently obtained in [12],[13],[14] and [17].

DOI: https://doi.org/10.2478/amsil-2025-0006 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 331 - 348
Submitted on: Nov 21, 2024
Accepted on: Mar 12, 2025
Published on: Apr 26, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Krzysztof Piejko, Lucyna Trojnar-Spelina, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.