Have a personal or library account? Click to login
Central Limit Theorem for Random Dynamical System with Jumps and State-Dependent Jump Intensity Cover

Central Limit Theorem for Random Dynamical System with Jumps and State-Dependent Jump Intensity

Open Access
|Mar 2025

References

  1. T. Alkurdi, S. Hille, and O. van Gaans, Persistence of stability for equilibria of map iterations in Banach spaces under small random perturbations, Potential Anal. 42 (2015), no. 1, 175–201.
  2. M. Benaïm, S. Le Borgne, F. Malrieu, and P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems, Electron. Commun. Probab. 17 (2012), no. 56, 14 pp.
  3. O.L.V. Costa and F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. Control Optim. 47 (2008), no. 2, 1053–1077.
  4. D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, A useful version of the central limit theorem for a general class of Markov chains, J. Math. Anal. Appl. 484 (2020), no. 1, 123725, 22 pp.
  5. D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, Ergodic properties of some piecewise-deterministic Markov process with application to gene expression modelling, Stochastic Process. Appl. 130 (2020), no. 5, 2851–2885.
  6. D. Czapla and J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson-driven stochastic diflerential equation, Dyn. Syst. 34 (2019), no. 1, 130–156.
  7. M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiflusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), no. 3, 353–388.
  8. F. Dufour and O.L.V. Costa, Stability of piecewise-deterministic Markov processes, SIAM J. Control Optim. 37 (1999), no. 5, 1483–1502.
  9. S. Hille, K. Horbacz, and T. Szarek, Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Ann. Math. Blaise Pascal 23 (2016), no. 2, 171–217.
  10. K. Ito and F. Kappel, Evolution Equations and Approximations, Ser. Adv. Math. Appl. Sci., 61, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
  11. J. Kubieniec, The law of the iterated logarithm for random dynamical system with jumps and state-dependent jump intensity, Ann. Math. Sil. 35 (2021), no. 2, 236–249.
  12. A. Lasota, From fractals to stochastic diflerential equations, in: P. Garbaczewski et al. (eds.), Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Phys., 457, Springer-Verlag, Berlin, 1995, pp. 235–255.
  13. A. Lasota and J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), no. 1, 41–77.
  14. M.C. Mackey, M. Tyran-Kamińska, and R. Yvinec, Dynamic behavior of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math. 73 (2013), no. 5, 1830–1852.
  15. T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math. 154 (2003), no. 3, 207–222.
  16. H. Wojewódka, Exponential rate of convergence for some Markov operators, Statist. Probab. Lett. 83 (2013), no. 10, 2337–2347.
DOI: https://doi.org/10.2478/amsil-2025-0004 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: Sep 8, 2024
Accepted on: Jan 15, 2025
Published on: Mar 9, 2025
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Joanna Kubieniec, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT