References
- T. Alkurdi, S. Hille, and O. van Gaans, Persistence of stability for equilibria of map iterations in Banach spaces under small random perturbations, Potential Anal. 42 (2015), no. 1, 175–201.
- M. Benaïm, S. Le Borgne, F. Malrieu, and P.-A. Zitt, Quantitative ergodicity for some switched dynamical systems, Electron. Commun. Probab. 17 (2012), no. 56, 14 pp.
- O.L.V. Costa and F. Dufour, Stability and ergodicity of piecewise deterministic Markov processes, SIAM J. Control Optim. 47 (2008), no. 2, 1053–1077.
- D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, A useful version of the central limit theorem for a general class of Markov chains, J. Math. Anal. Appl. 484 (2020), no. 1, 123725, 22 pp.
- D. Czapla, K. Horbacz, and H. Wojewódka-Ściążko, Ergodic properties of some piecewise-deterministic Markov process with application to gene expression modelling, Stochastic Process. Appl. 130 (2020), no. 5, 2851–2885.
- D. Czapla and J. Kubieniec, Exponential ergodicity of some Markov dynamical systems with application to a Poisson-driven stochastic diflerential equation, Dyn. Syst. 34 (2019), no. 1, 130–156.
- M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiflusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), no. 3, 353–388.
- F. Dufour and O.L.V. Costa, Stability of piecewise-deterministic Markov processes, SIAM J. Control Optim. 37 (1999), no. 5, 1483–1502.
- S. Hille, K. Horbacz, and T. Szarek, Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene, Ann. Math. Blaise Pascal 23 (2016), no. 2, 171–217.
- K. Ito and F. Kappel, Evolution Equations and Approximations, Ser. Adv. Math. Appl. Sci., 61, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
- J. Kubieniec, The law of the iterated logarithm for random dynamical system with jumps and state-dependent jump intensity, Ann. Math. Sil. 35 (2021), no. 2, 236–249.
- A. Lasota, From fractals to stochastic diflerential equations, in: P. Garbaczewski et al. (eds.), Chaos - The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Phys., 457, Springer-Verlag, Berlin, 1995, pp. 235–255.
- A. Lasota and J.A. Yorke, Lower bound technique for Markov operators and iterated function systems, Random Comput. Dynam. 2 (1994), no. 1, 41–77.
- M.C. Mackey, M. Tyran-Kamińska, and R. Yvinec, Dynamic behavior of stochastic gene expression models in the presence of bursting, SIAM J. Appl. Math. 73 (2013), no. 5, 1830–1852.
- T. Szarek, Invariant measures for Markov operators with application to function systems, Studia Math. 154 (2003), no. 3, 207–222.
- H. Wojewódka, Exponential rate of convergence for some Markov operators, Statist. Probab. Lett. 83 (2013), no. 10, 2337–2347.