Have a personal or library account? Click to login
Convex Solutions of an Iterative Functional Differential Equation Cover

Convex Solutions of an Iterative Functional Differential Equation

By: Lin Huang Li and  Yu Zhao Hou  
Open Access
|Mar 2025

References

  1. R. Bellman and K.L. Cooke, Differential-Difference Equations, Acadmic Press, New York-London, 1963.
  2. T.A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, Inc., Mineola, NY, 2006.
  3. S.N. Chow, Existence of periodic solutions of autonomous functional differential equations, J. Differential Equations 15 (1974), 350–378.
  4. K.L. Cooke, Functional differential equations: some models and perturbation problems, in: J.K. Hale and J.P. LaSalle (eds.), Differential Equations and Dynamical Systems (Proc. Internat. Sympos., Mayaguez, P.R., 1965), Academic Press, New York-London, 1967, pp. 167–183.
  5. E. Eder, The functional differential equation x(t) = x(x(t)), J. Differential Equations 54 (1984), 390–400.
  6. M. Fečkan, On a certain type of functional-differential equations, Math. Slovaca 43 (1993), 39–43.
  7. J. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York-Heidelberg, 1977.
  8. J. Liu and J.G. Si, Analytic solutions for a class of differential equation with delays depending on state, Appl. Math. Comput. 186 (2007), 261–270.
  9. B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl. 7 (1966), 72–75.
  10. Y.N. Raffoul, Positive periodic solutions in neutral nonlinear differential equations, Electron. J. Qual. Theory Differ. Equ. 2007, No. 16, 10 pp.
  11. A.W. Roberts and D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.
  12. J.G. Si and S.S. Cheng, Smooth solutions of a nonhomogeneous iterative functional-differential equation, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 821–831.
  13. J.G. Si, W.R. Li, and S.S. Cheng, Analytic solutions of an iterative functional-differential equation, Comput. Math. Appl. 33 (1997), 47–51.
  14. J.G. Si and X.P. Wang, Smooth solutions of a nonhomogeneous iterative functional-differential equation with variable coefficients, J. Math. Anal. Appl. 226 (1998), 377–392.
  15. D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1980.
  16. S. Staněk, On global properties of solutions of functional-differential equation x(t) = x(x(t)) + x(t), Dynam. Systems Appl. 4 (1995), 263–278.
  17. K. Wang, On the equation x(t) = f (x(x(t))), Funkcial. Ekvac. 33 (1990), 405–425.
  18. X.P. Wang and J.G. Si, Analytic solutions of an iterative functional differential equation, J. Math. Anal. Appl. 262 (2001), 490–498.
  19. B. Xu and W.N. Zhang, Decreasing solutions and convex solutions of the polynomial-like iterative equation, J. Math. Anal. Appl. 329 (2007) 483–497.
  20. W.N. Zhang, K. Nikodem, and B. Xu, Convex sulutions of polynomial-like iterative equations, J. Math. Anal. Appl. 315 (2006) 29–40.
  21. H.Y. Zhao and J. Liu, Periodic solutions of an iterative functional differential equation with variable coefficients, Math. Methods Appl. Sci. 40 (2017), 286–292.
DOI: https://doi.org/10.2478/amsil-2025-0002 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 83 - 97
Submitted on: Jun 7, 2024
|
Accepted on: Jan 15, 2025
|
Published on: Mar 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2025 Lin Huang Li, Yu Zhao Hou, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.