Given S a semigroup. We study two Pexider-type functional equations
f\left( {xy} \right) + g\left( {xy} \right) = f\left( x \right) + f\left( y \right) + g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,y\,\, \in \,\,S,
and
\int_S {f\left( {xyt} \right)d\mu \left( t \right) + \int_s {g\left( {xyt} \right)d\mu \left( t \right) = f\left( x \right) + f\left( y \right) + g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,y \in S,} }
for unknown functions f and g mapping S into ℂ, where µ is a linear combination of Dirac measures (δzi )i∈I for some fixed elements (zi)i∈I contained in S such that ∫S dµ(t) = 1.
The main goal of this paper is to solve the above two functional equations and examine whether or not they are equivalent to the systems of equations
{\left\{ {\matrix{{f\left( {xy} \right) = f\left( x \right) + f\left( y \right),} \cr {g\left( {xy} \right) = g\left( x \right)g\left( y \right),\,\,\,\,\,x,y \in S,} \cr } } \right.}
and
\left\{ {\matrix{{\int_S {f\left( {xyt} \right)d\mu \left( t \right)} = f\left( x \right) + f\left( y \right),} \cr {\int_S {g\left( {xyt} \right)d\mu \left( t \right) = g\left( x \right)g\left( y \right),\,\,\,\,\,x,y \in S,} } \cr } } \right.
respectively.