Have a personal or library account? Click to login
On the Alienation of Multiplicative and Additive Functions Cover

On the Alienation of Multiplicative and Additive Functions

Open Access
|Nov 2024

Abstract

Given S a semigroup. We study two Pexider-type functional equations f(xy)+g(xy)=f(x)+f(y)+g(x)g(y),x,yS, f\left( {xy} \right) + g\left( {xy} \right) = f\left( x \right) + f\left( y \right) + g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,y\,\, \in \,\,S, and Sf(xyt)dμ(t)+sg(xyt)dμ(t)=f(x)+f(y)+g(x)g(y),x,yS, \int_S {f\left( {xyt} \right)d\mu \left( t \right) + \int_s {g\left( {xyt} \right)d\mu \left( t \right) = f\left( x \right) + f\left( y \right) + g\left( x \right)g\left( y \right),\,\,\,\,\,\,\,x,y \in S,} } for unknown functions f and g mapping S into ℂ, where µ is a linear combination of Dirac measures (δzi )iI for some fixed elements (zi)iI contained in S such that ∫S(t) = 1.

The main goal of this paper is to solve the above two functional equations and examine whether or not they are equivalent to the systems of equations { f(xy)=f(x)+f(y),g(xy)=g(x)g(y),x,yS, {\left\{ {\matrix{{f\left( {xy} \right) = f\left( x \right) + f\left( y \right),} \cr {g\left( {xy} \right) = g\left( x \right)g\left( y \right),\,\,\,\,\,x,y \in S,} \cr } } \right.} and { Sf(xyt)dμ(t)=f(x)+f(y),Sg(xyt)dμ(t)=g(x)g(y),x,yS, \left\{ {\matrix{{\int_S {f\left( {xyt} \right)d\mu \left( t \right)} = f\left( x \right) + f\left( y \right),} \cr {\int_S {g\left( {xyt} \right)d\mu \left( t \right) = g\left( x \right)g\left( y \right),\,\,\,\,\,x,y \in S,} } \cr } } \right. respectively.

DOI: https://doi.org/10.2478/amsil-2024-0022 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Submitted on: May 18, 2024
Accepted on: Oct 23, 2024
Published on: Nov 15, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Mohamed Chakiri, Abdellatif Chahbi, Elhoucien Elqorachi, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.

AHEAD OF PRINT