Have a personal or library account? Click to login
On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian via Young Measures Cover

On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian via Young Measures

Open Access
|Nov 2024

Full Article

1.
Introduction

Recently, there has been a lot of interest in the systematic study of problems involving non-local operators due to their frequency in practical real-world applications, such as finance, optimization, soft thin films, stratified materials, and phase transitions. We refer the reader to see [32]. The elliptic theory for linear and quasilinear nonlocal operators has seen extensive research over the past few decades, particularly in the works of Caffarelli and collaborators [4, 5, 14]. Additionally, research on nonlocal nonlinear problems has been extensively explored in [30], we also refer to [9, 10, 11, 15, 22, 24, 25, 26, 31] on related existence results for the problems of elliptic and parabolic type involving non-local fractional Laplacian (p-Laplacian) operators.

In this paper, suppose that Ω is a bounded open domain of ℝn and T is a real positive number. We deal with the following initial boundary value problem: (1.1) {ut+(Δ)psu=f(x,t,u)inQT=Ω×(0,T),u=0in(n\Ω)×(0,T),u(x,0)=u(x)inΩ, \left\{{\matrix{{{{\partial u} \over {\partial t}} + (- \Delta)_p^su = f(x,t,u)} \hfill & {{\rm{in}}\,{Q_T} = \Omega \times (0,T),} \hfill \cr {u = 0} \hfill & {{\rm{in}}\,({{\mathbb R}^n}\backslash \Omega) \times (0,T),} \hfill \cr {u(x,0) = u(x)} \hfill & {{\rm{in}}\,\Omega,} \hfill \cr}} \right. where 0 < s < 1 and 2 < p are real numbers, u: Ω × (0, T) m, m ∈ {0, 1, 2, . . .} is a vector-valued function and the function f satisfies the following hypothesis:

  • (H1)

    f : Ω × (0, T) × ℝm m is a Carathéodory function satisfying |f(x,t,r)|α0(1+|r|q1),Ft(x,t,r)α1(1|r|q), \matrix{{\left| {f(x,t,r)} \right| \le {\alpha_0}(1 + |r{|^{q - 1}}),} \cr {{F_t}(x,t,r) \ge {\alpha_1}(- 1 - |r{|^q}),} \cr} for all (x, t, r) ∈ Ω × (0, T) × ℝm, where α0, α1 are positive constants, F(x,t,r)=0rf(x,t,l)dl F(x,t,r) = \mathop \smallint \nolimits_0^r f(x,t,l)dl and Ft=ddtF {F_t} = {d \over {dt}}F .

The fractional p-Laplacian operator (Δ)psu (- \Delta)_p^su is defined as follows: (Δ)psu(x,t)=P.Vn|u(x,t)u(y,t)|p2(u(x,t)u(y,t))|xy|n+psdy,xn, (- \Delta)_p^su(x,t) = P.V \int_{{\mathbb R}^n} {\matrix{{{{|u(x,t) - u(y,t){|^{p - 2}}(u(x,t) - u(y,t))} \over {|x - y{|^{n + ps}}}}dy,} & {x \in {{\mathbb R}^n},} \cr}} where P.V stands for “in the principal value sense” and is a frequently used abbreviation. For more information on this operator, see [13].

Concerning the fractional Laplacian (p = 2), a famous model for anomalous diffusion is the following equation: ut+(Δ)su=0 {{\partial u} \over {\partial t}} + {(- \Delta)^s}u = 0 , which comes asymptotically from basic random walk models (see [33, 34]). Also in [17], de Pablo et al. proposed the nonlinear anomalous diffusion equation ut+(Δ)s(um)=0 {{\partial u} \over {\partial t}} + {(- \Delta)^s}({u^m}) = 0 , the fractional porous medium equation with 0 < s < 1 and m > 0. We also refer to [34] for more details on this type of equation.

On the other hand, in the case p ≠ 2 and f = 0, Vázquez in [35] proved the existence and uniqueness of strong nonnegative solutions for (1.1). If u0L2(Ω), the existence results of energy solution were studied in [29].

When it comes to the problem (1.1), the existence results are treated in several works, for example, the different issues of the existence and the regularity of energy-weak solutions to the problem same to (1.1) were investigated by Giacomoni et al. in [21]. In [1], the authors have studied the problem (1.1) with f depending only on x and t and proved the existence results with suitable regularity if (f, u0) ∈ L1T) × L1(Ω) and has a nonnegative entropy solution if f0, u0 are nonnegative. The same author in [2] proved the asymptotic behavior result of entropy solutions when the right-hand side does not depend on time.

The idea of this work, motivated by all of the results above, is to study the existence of weak solutions to the problem (1.1) by using the Galerkin method combined with the theory of Young measures. To the best of our knowledge, the parabolic problem (1.1) has never been studied by the theory of Young measure. We suggest to the readers to consult [6, 7, 19] which treat some elliptic and parabolic systems by such a theory. In [8], the authors proved the existence of weak solutions to the elliptic case of (1.1) employing the Young measures theory and the Galerkin method.

This article is organized into four sections. In Section 2 we give some background information on fractional Sobolev spaces and a review of the Young measures theory. Later, under some assumptions, we obtain the existence of weak solutions using the Galerkin approximation and the Young measures. The final part is devoted to illustrating the feasibility of the hypotheses with an example.

2.
Preliminaries and notations

In this section, we first recall some necessary results which will be used in the next section. Let 1 < p < ∞, s ∈ (0, 1), we define ps* p_s^* the fractional critical exponent by: ps*={ifpsn,np/(nps)ifps<n. p_s^* = \left\{{\matrix{\infty \hfill & {{\rm{if}}\,ps \ge n,} \hfill \cr {np/(n - ps)} \hfill & {{\rm{if}}\,ps < n.} \hfill \cr}} \right. Let Ω ⊂ ℝn be an open set, QΩ = (ℝn × ℝn) \(𝒞Ω × 𝒞Ω), Qτ = Ω × (0, τ) for all τ ∈ (0, T ] and 𝒞Ω = ℝn\Ω. It is clear that Ω × Ω is strictly contained in QΩ. W is a linear space of Lebesgue measurable functions from ℝn to ℝm such that the restriction to Ω of any function u in W belongs to Lp(Ω; ℝm) and QΩ|u(x)u(y)|p|xy|n+psdydx<. \int\!\!\!\int_{{Q_\Omega}} {{{|u(x) - u(y){|^p}} \over {|x - y{|^{n + ps}}}}dydx < \infty.} The space W is equipped with the norm uW=uLp(Ω;m)+(QΩ|u(x)u(y)|p|xy|n+psdydx)1/p. {\left\| u \right\|_W} = {\left\| u \right\|_{{L^p}(\Omega ;{{\mathbb R}^m})}} + {\left({\int\!\!\!\int_{{Q_\Omega}} {{{|u(x) - u(y){|^p}} \over {|x - y{|^{n + ps}}}}dydx}} \right)^{1/p}}. Let us consider the closed linear subspace W0={uW:u=0a.e.in𝒞Ω}. {W_0} = \left\{{u \in W:u = 0\,{\rm{a}}.{\rm{e}}.\,{\rm{in}}\,{\cal C}\Omega} \right\}. In W0, we may also use the norm uW0=(QΩ|u(x)u(y)|p|xy|n+psdydx)1/p. {\left\| u \right\|_{{W_0}}} = {\left({\int\!\!\!\int_{{Q_\Omega}} {{{|u(x) - u(y){|^p}} \over {|x - y{|^{n + ps}}}}dydx}} \right)^{1/p}}. It is known that (W0, ∥ · ∥W0) is a uniformly convex reflexive Banach space (see [36]). The following Poincare’s inequality from [12] will be used below: there exists Cr > 0 such that (2.1) ϕLr(Ω,m)CrϕW0forallϕW0andr[1,ps*]. \matrix{{{{\left\| \phi \right\|}_{{L^r}\left({\Omega,{{\mathbb R}^m}} \right)}} \le {C_r}{{\left\| \phi \right\|}_{{W_0}}}} & {{\rm{for}}\,{\rm{all}}} & {\phi \in {W_0}} & {{\rm{and}}} & {r \in [1,p_s^*]} \cr}. In the sequel, let p<ns p < {n \over s} and Ci, i = 1, 2, . . . be positive constants that vary from line to line, and are independent of the terms involved in any limit process. We note the following functional space Lp(0, T; W0), which is a separable and reflexive Banach space endowed with the norm uLp(0,T;W0)=(0TuW0pdt)1/p. {\left\| u \right\|_{{L^p}\left({0,T;{W_0}} \right)}} = {\left({\mathop \smallint \nolimits_0^T \left\| u \right\|_{{W_0}}^pdt} \right)^{1/p}}.

Lemma 2.1. ([20])

The space 𝒞0(Ω;m) {\cal C}_0^\infty \,(\Omega ;{{\mathbb R}^m}) of infinitely differentiable functions with compact support on Ω is dense in W0.

Lemma 2.2. ([18])

The following embedding W0Lr (Ω; ℝm) is compact for all r[1,ps*) r \in [1,p_s^*) , and continuous for all r[1,ps*] r \in [1,p_s^*] .

In the following, 𝒞0 (ℝm) stands for the space of continuous functions on ℝm with compact support with regards to the ∥·-norm. The space of signed Radon measures with finite mass is noted ℳ (ℝm). The corresponding duality is given by {μ,ρ=mρ(λ)dμ(λ). \{\mu,\rho \rangle = \int_{{{\mathbb R}^m}} {\rho (\lambda)d\mu (\lambda)}.

Definition 2.3. ([8])

Let {zj}j≥1 be a bounded sequence in L (Ω; ℝm). Then there exist a subsequence {zk} ⊂ {zj} and a Borel probability measure µx on ℝm for almost every x ∈ Ω, such that for a.e. ρ ∈ 𝒞 (ℝm) we have ρ(zk)*ρ¯ \rho ({z_k}) \rightharpoonup *\bar \rho weakly in L(Ω), where ρ¯(x)={μx,ρ=mρ(λ)dμx(λ) \bar \rho (x) = \{{\mu_x},\rho \rangle = \int_{{{\mathbb R}^m}} {\rho (\lambda)d{\mu_x}(\lambda)} for a.e. x ∈ Ω.

Lemma 2.4. ([23])

Let Ω ⊂ ℝn be Lebesgue measurable (not necessarily bounded) and zj from Ω tom, for j ∈ ℕ, be a sequence of Lebesgue measurable functions. Then there exist a subsequence zk and a family {µx}x∈Ω of non-negative Radon measures onm, such that

  • (i)

    µxℳ(ℝm) := ∫m x(λ) 1 for almost every x ∈ Ω.

  • (ii)

    ρ(zk)*ρ¯ \rho ({z_k}) \rightharpoonup *\bar \rho weakly in L(Ω) for all 𝒞0 (ℝm), where ρ¯(x)=μx,ρ \bar \rho (x) = \left\langle {{\mu_x},\rho} \right\rangle .

  • (iii)

    If for all M > 0 (2.2) limNsupk|{xΩBM(0):|zk(x)|N}|=0, \mathop {\lim}\limits_{N \to \infty} \mathop {\sup}\limits_{k \in {\mathbb N}} |\{x \in \Omega \cap {B_M}(0):\left| {{z_k}(x)} \right| \ge N\} | = 0, thenµx∥ = 1 for a.e. x ∈ Ω, and for any measurable Ω′ ⊂ Ω we have ρ(zk)ρ¯=μx,ρ \rho ({z_k}) \rightharpoonup \bar \rho = \left\langle {{\mu_x},\rho} \right\rangle weakly in L1 (Ω′) for continuous function ρ provided the sequence ρ (zk) is weakly precompact in L1 (Ω′).

3.
Local existence of weak solutions

In this section, we define a weak solution to the problem (1.1) and prove the main result (Theorem 3.2 below). We start with the following definition:

Definition 3.1

A function uLp(0, T; W0) is called a weak solution of (1.1), if utL2(QT;m) {{\partial u} \over {\partial t}} \in {L^2}({Q_T};{{\mathbb R}^m}) and QTutϕdxdt+0TQΩ|u(x,t)u(y,t)|p2(u(x,t)u(y,t))|xy|n+ps(ϕ(x,t)ϕ(y,t))dxdydt=QTf(x,t,u)ϕdxdt, \matrix{{\int_{{Q_T}} {{{\partial u} \over {\partial t}}\phi dxdt}} \hfill \cr {+ \mathop \smallint \nolimits_0^T \int\!\!\!\int_{{Q_\Omega}} {{{|u(x,t) - u(y,t){|^{p - 2}}(u(x,t) - u(y,t))} \over {|x - y{|^{n + ps}}}}(\phi (x,t) - \phi (y,t))dxdydt}} \hfill \cr \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{= \int_{{Q_T}} {f(x,t,u)\phi dxdt},} \hfill \cr} holds for all ϕC1(0,T;C0(Ω)) \phi \in {C^1}\,(0,T;C_0^\infty (\Omega)) .

Theorem 3.2

If u0W0, 2<q<(2+p)ps*2pps*<ps* 2 < q < {{(2 + p)p_s^* - 2p} \over {p_s^*}} < p_s^* and (H1) is satisfied, then there exists a constant T0 > 0 such that problem (1.1) has at least one weak solution as T < T0.

Proof

The proof is divided into three assertions.

Assertion 1: Galerkin approximation

Similar to that in [27], we take a sequence {wj}j1C0(Ω;m) {\{{w_j}\}_{j \ge 1}} \subset C_0^\infty \,(\Omega ;\,{{\mathbb R}^m}) , such that C0(Ω;m)k1Uk¯C1(Ω¯) C_0^\infty \,(\Omega ;\,{{\mathbb R}^m}) \subset {\overline {\bigcup\nolimits_{k \ge 1} {{U_k}}}^{{C_1}(\overline \Omega)}} , where {wj}j≥1 is an orthonormal basis in L2 (Ω; ℝm) and Uk = span {w1, . . . , wk}.

Lemma 3.3

For the function u0W0, there exists a subsequence ξkUk such that ξk → u0 in W0 as k → ∞.

Proof

Since u0W0, we can find a sequence {vk} in C0(Ω;m) C_0^\infty \,(\Omega ;\,{\rm{@}}{{\rm{R}}^m}) such that vk → u0 in W0. Since {vk}C0(Ω;m)M1UM¯C1(Ω¯;m) \{{v_k}\} \subset C_0^\infty \,(\Omega ;\,{{\mathbb R}^m}) \subset {\bigcup\nolimits_{M \ge 1} {\overline {{U_M}}}^{{C^1}(\overline \Omega ;{{\mathbb R}^m})}} , there exists a sequence {vki}M1UM \{v_k^i\} \subset \bigcup\nolimits_{M \ge 1} {{U_M}} such that vkivk v_k^i \to {v_k} in C1(Ω¯;m) {C^1}\left({\bar \Omega ;{{\mathbb R}^m}} \right) as i tends to . For 12k {1 \over {{2^k}}} , there exists ik 1 such that vkikvkC1(Ω¯)12k {\left\| {v_k^{{i_k}} - {v_k}} \right\|_{{C^1}(\overline \Omega)}} - \le {1 \over {{2^k}}} . Therefore vkiku0W0C1vkikvkC1(Ω¯)+vku0W0. {\left\| {v_k^{{i_k}} - {u_0}} \right\|_{{W_0}}} \le {C_1}{\left\| {v_k^{{i_k}} - {v_k}} \right\|_{{C^1}\left({\overline \Omega} \right)}} + {\left\| {{v_k} - {u_0}} \right\|_{{W_0}}}. Hence vkiku0 v_k^{{i_k}} \to {u_0} in W0 as k tends to . We denote uk=vkik {u_k} = v_k^{{i_k}} . Since ukUM≥1 UM, there exists UMk such that ukUMk, without loss of generality, we assume that UM1UM2 as M1 ≤ M2. We suppose that M1 > 1 and define ξk as follows: {ξk(x)=0,fork=1,,M11,ξk(x)=u1,fork=M1,,M21,ξk(x)=u2,fork=M2,,M31, \left\{{\matrix{{{\xi_k}(x) = 0,} \hfill & {{\rm{for}}\,k = 1, \ldots,{M_1} - 1,} \hfill \cr {{\xi_k}(x) = {u_1},} \hfill & {{\rm{for}}\,k = {M_1}, \ldots,{M_2} - 1,} \hfill \cr {{\xi_k}(x) = {u_2},} \hfill & {{\rm{for}}\,k = {M_2}, \ldots,{M_3} - 1,} \hfill \cr \vdots \hfill & \vdots \hfill \cr}} \right. Then {ξk} is the desired sequence such that ξk → u0 in W0 as k → ∞.

We define the function Rk : [0, T) × ℝk k where k is fixed: (R(t,ς))i=QΩ|j=1k(ςj(t))jwj(x)j=1k(ςj(t))jwj(y)|p2xy|n+ps×(j=1k(ςj(t))jwj(x)j=1k(ςj(t))jwj(y))(wi(x)wi(y))dxdy, \matrix{{{{(R(t,\varsigma))}_i}} \hfill & {= \int\!\!\!\int_{{Q_\Omega}} {{{{{\left| {\sum\nolimits_{j = 1}^k {{{({\varsigma_j}(t))}_j}{w_j}(x)} - \sum\nolimits_{j = 1}^k {{{({\varsigma_j}(t))}_j}{w_j}(y)}} \right|}^{p - 2}}} \over {x - y{|^{n + ps}}}}}} \hfill \cr {} \hfill & {\times \left({\sum\limits_{j = 1}^k {{{({\varsigma_j}(t))}_j}{w_j}(x)} - \sum\limits_{j = 1}^k {{{({\varsigma_j}(t))}_j}{w_j}(y)}} \right)({w_i}(x) - {w_i}(y))dxdy,}\hfill } for ς ∈ ℝk and i = 1, . . . , k. The function R(t, ς) is continuous in t and ς.

Now, we shall construct the approximating solutions for (1.1) as follows: uk(x,t)=j=1k(bj(t))jwj(x), {u_k}(x,t) = \sum\limits_{j = 1}^k {{{({b_j}(t))}_j}{w_j}(x)}, where unknown functions (b(t))j are determined by the following system of ODE: (3.1) {b(t)+Rk(t,b(t))=Sk(t,b(t)),0<t<T,b(0)=ψk(0), \left\{{\matrix{{b^{'}(t) + {R_k}(t,b(t)) = {S_k}(t,b(t)),} \hfill & {0 < t < T,} \hfill \cr {b(0) = {\psi_k}(0),} \hfill & {} \hfill \cr}} \right. where (Sk(t,b))i=Ωf(x,t,j=1kbjwj)widx,(ψk(0))i=Ωξk(x)widx, {({S_k}(t,b))_i} = \int_\Omega {\matrix{{f(x,t,\sum\limits_{j = 1}^k {{b_j}{w_j}}){w_i}dx,} & {{{({\psi_k}(0))}_i} = \int_\Omega {{\xi_k}(x){w_i}dx}} \cr}}, and ξk(x)u0inW0askwhereξk(x)Uk. \matrix{{{\xi_k}(x) \to {u_0}} & {{\rm{in}}\,{W_0}} & {{\rm{as}}\,k} \cr} \to \infty \,{\rm{where}}\,{\xi_k}(x) \in {U_k}. Multiplying (3.1) by b(t), we get (3.2) bb+Rk(t,b)b=Sk(t,b)b. b^{'}b + {R_k}(t,b)b = {S_k}(t,b)b. According to (H1), the following inequalities hold (3.3) Sk(t,b)bα0Ω(|j=1kbjwj|q+|j=1kbjwj|)dxα0Ω|j=1kbjwj|qdx+α0C2Ω|j=1kbjwj|2dx. \matrix{{{S_k}(t,b)b} \hfill & {\le {\alpha_0}\int_\Omega {\left( {{{\left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|}^q} + \left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|} \right)} dx} \hfill \cr {} \hfill & {\le {\alpha_0}\int_\Omega {{{\left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|}^q}dx} + {\alpha_0}{C_2}\int_\Omega {{{\left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|}^2}dx} .} \hfill \cr} Since 2<q<ps* 2 < q < p_s^* , using the interpolation inequality (see [3, Theorem 2.11]) and (2.1), we get (3.4) Ω|j=1kbjwj|qdxj=1kbjwjL2(Ω;m)θqj=1kbjwjLps*(Ω;m)(1θ)qCps*j=1kbjwjL2(Ω;m)θqj=1kbjwjW0(1θ)q, \matrix{{\int_\Omega {{{\left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|}^q}dx}} \hfill & {\le \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^{\theta q}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^{p_s^*}}(\Omega ;{{\mathbb R}^m})}^{(1 - \theta)q}} \hfill \cr {} \hfill & {\le {C_{p_s^*}}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^{\theta q}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^{(1 - \theta)q},} \hfill \cr} where θ ∈ (0, 1) satisfies 1q=θ2+1θps* {1 \over q} = {\theta \over 2} + {{1 - \theta} \over {p_s^*}} \cdot We observe that (1θ)q=ps*(q2)ps*2<ps* (1 - \theta)q = {{p_s^*\left({q - 2} \right)} \over {p_s^* - 2}} < p_s^* and λ:=pθqp(1θ)q=2p(ps*q)ps*(pq+2)2p>2. \lambda : = {{p\theta q} \over {p - (1 - \theta)q}} = {{2p(p_s^* - q)} \over {p_s^*(p - q + 2) - 2p}} > 2. For any ϵ ∈ (0, 1), the Young inequality implies (3.5) j=1kbjwjL2(Ω;m)θqj=1kbjwjW0(1θ)qɛj=1kbjwjW0p+C(ɛ)j=1kbjwjL2(Ω;m)λ. \matrix{{\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^{\theta q}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^{(1 - \theta)q}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le \epsilon \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^p + C(\epsilon)\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^\lambda.} \hfill \cr} Then, (3.4) is transformed into the following inequality (3.6) Ω|j=1kbjwj|qdxCps*ɛj=1kbjwjW0p+C(ɛ)j=1kbjwjL2(Ω;m)λ. {\int_\Omega {\left| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right|}^q}dx \le {C_{p_s^*}}\epsilon \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^p + C(\epsilon)\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^\lambda. Plugging inequalities (3.3), (3.4) and (3.6) into (3.2), we deduce that 12d|b(t)|2dt+j=1kbjwjW0pCps*α0ɛj=1kbjwjW0p+α0C(ɛ)j=1kbjwjL2(Ω;m)λ+α0j=1kbjwjL2(Ω;m)2. \matrix{{{1 \over 2}{{d|b(t){|^2}} \over {dt}} + \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^p \le {C_{p_s^*}}{\alpha_0}\epsilon \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^p} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\alpha_0}C(\epsilon)\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^\lambda + {\alpha_0}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^2.} \hfill \cr} By choosing ɛ=12α0Cps* \epsilon = {1 \over {2{\alpha_0}{C_{p_s^*}}}} , we get (3.7) 12d|b(t)|2dt+12j=1kbjwjW0pα0C(ɛ)j=1kbjwjL2(Ω;m)λ+α0j=1kbjwjL2(Ω;m)2. \matrix{{{1 \over 2}{{d|b(t){|^2}} \over {dt}} + {1 \over 2}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{W_0}}^p \le {\alpha_0}C(\epsilon)\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^\lambda} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\alpha_0}\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^2.} \hfill \cr} It follows that d|b(t)|2dt2C3(j=1kbjwjL2(Ω;m)λ+j=1kbjwjL2(Ω;m)2). {{d|b(t){|^2}} \over {dt}} \le 2{C_3}\left({\left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^\lambda + \left\| {\sum\limits_{j = 1}^k {{b_j}{w_j}}} \right\|_{{L^2}(\Omega ;{{\mathbb R}^m})}^2} \right). Denote z(t) = |b(t)|2, then (3.8) dz(t)dt2C3(z(t)λ2+z(t)). {{dz(t)} \over {dt}} \le 2{C_3}\left({z{{(t)}^{{\lambda \over 2}}} + z(t)} \right). Integrating (3.8) from 0 to t, and using the property z(0)=|b(0)|2=Ωξk2(x)dxC4, z(0) = |b(0){|^2} = \int_\Omega {\xi_k^2(x)dx \le {C_4}}, we can conclude that z(t)exp(2C3t)(C41λ2exp(C3(λ2)t))22λ,ast<ln(C41λ2)C3(λ2). \matrix{{z(t) \le {\rm{exp}}(2{C_3}t){{\left({C_4^{1 - {\lambda \over 2}} - {\rm{exp}}({C_3}(\lambda - 2)t)} \right)}^{{2 \over {2 - \lambda}}}},} & {{\rm{as}}\,t < {{{\rm{ln(}}C_4^{1 - {\lambda \over 2}}{\rm{)}}} \over {{C_3}(\lambda - 2)}}.} \cr} For 0<T<T0=ln(C41λ2)C3(λ2) 0 < T < {T_0} = {{\ln (C_4^{1 - {\lambda \over 2}})} \over {{C_3}(\lambda - 2)}} , we obtain that |b(t)| ≤ C(T) ∀t ∈ [0, T ], where C(T)=exp(2C3T)(C41λ2exp(C3(λ2)T))22λ. C(T) = \exp (2{C_3}T){(C_4^{1 - {\lambda \over 2}} - \exp ({C_3}(\lambda - 2)T))^{{2 \over {2 - \lambda}}}} Put Jk=max(t,b)[0,T]×B(b(0),2C(T))|SkRk(t,b)|andβk=min{T,2C(T)Jk}, \matrix{{{{\cal J}_k} = \mathop {\max}\limits_{(t,b) \in [0,T] \times B(b(0),2C(T))} \left| {{S_k} - {R_k}(t,b)} \right|} & {{\rm{and}}} & {{\beta_k} = \min \left\{{T,{{2C(T)} \over {{{\cal J}_k}}}} \right\}} \cr}, where B(b(0), 2C(T)) is the ball of center b(0) and radius 2C(T). By [16, Peano theorem], we know that problem (3.1) has a C1 solution on [0, βk]. Let b (βk) be an initial value, then we can repeat the above process and get a C1 solution on [βk, 2βk]. Without loss of generality, we assume that T=[Tβk]βk+(Tβk)βk,0<(Tβk)<1, \matrix{{T = \left[ {{T \over {{\beta_k}}}} \right]{\beta_k} + \left({{T \over {{\beta_k}}}} \right){\beta_k},} & {0 < \left({{T \over {{\beta_k}}}} \right) < 1,} \cr} where [Tβk] \left[ {{T \over {{\beta_k}}}} \right] is the integer part of Tβk {T \over {{\beta_k}}} and (Tβk) \left({{T \over {{\beta_k}}}} \right) is the decimal part of Tβk {T \over {{\beta_k}}} . We can divide [0, T ] into [(i − 1)βk, k], i = 1, . . . , N and [k, T ] where N=[Tβk] N = \left[ {{T \over {{\beta_k}}}} \right] , then there exist C1 solution bki(t) b_k^i(t) in [(i − 1)βk, k], i = 1, . . . , N and bkN+1(t) b_k^{N + 1}(t) in [k, T ]. Therefore, we get a solution bk(t) ∈ C1([0, T ]) defined by bk(t)={bk1(t),ift[0,βk],bk2(t),ift(βk,2βk],bkN(t),ift((N1)βk,Nβk],bkN+1(t),ift(Nβk,T]. {b_k}(t) = \left\{{\matrix{{b_k^1(t),} \hfill & {{\rm{if}}\,t \in \left[ {0,{\beta_k}} \right],} \hfill \cr {b_k^2(t),} \hfill & {{\rm{if}}\,t \in \left({{\beta_k},2{\beta_k}} \right],} \hfill \cr \vdots \hfill & \vdots \hfill \cr {b_k^N(t),} \hfill & {{\rm{if}}\,t \in \left({(N - 1){\beta_k},N{\beta_k}} \right],} \hfill \cr {b_k^{N + 1}(t),} \hfill & {{\rm{if}}\,t \in \left({N{\beta_k},T} \right].} \hfill \cr}} \right. As a result, we get the desired Galerkin approximation solution.

Assertion 2: A priori estimates

By (3.1), we have (3.9) Ωuktwidx+QΩ|uk(x,t)uk(y,t)|p2(uk(x,t)uk(y,t))|xy|n+ps(wi(x)wi(y))dxdy=Ωf(x,t,uk)widx, \matrix{{\int_\Omega {{{\partial {u_k}} \over {\partial t}}{w_i}dx}} \hfill \cr {+ \int\!\!\!\int_{{Q_\Omega}} {{{|{u_k}(x,t) - {u_k}(y,t){|^{p - 2}}({u_k}(x,t) - {u_k}(y,t))} \over {|x - y{|^{n + ps}}}}({w_i}(x) - {w_i}(y))dxdy}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \int_\Omega {f(x,t,{u_k}){w_i}dx,}} \hfill \cr} where 1 ≤ i ≤ k and t ∈ [0, T ] (T < T0).

Multiplying (3.9) by (b(t))i (resp. by ddt(b(t))i {d \over {dt}}{(b(t))_i} ) and summing with respect to i from 1 to k, we arrive at (integrating with respect to t from 0 to τ (τ ∈ (0, T ])) (3.10) Qτuktukdxdt+0τuk(x,t)W0pdt=Qτf(x,t,uk)uxdxdt,Ω|ukt|2dx+QΩ|uk(x,t)uk(y,t)|p2(uk(x,t)uk(y,t))|xy|n+ps(uk(x,t)tuk(y,t)t)dxdy=Ωf(x,t,uk)uktdx. \matrix{\,\,\,\,\,\,\,\,\,\,{\int_{{Q_\tau}} {{{\partial {u_k}} \over {\partial t}}{u_k}dxdt} + \int_0^\tau {\left\| {{u_k}(x,t)} \right\|_{{W_0}}^pdt} = \int_{{Q_\tau}} {f(x,t,{u_k}){u_x}dxdt},} \hfill \cr \,\,\,\,\,\,\,\,\,\,{\int_\Omega {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dx}} \hfill \cr {+ \int\!\!\!\int_{{Q_\Omega}} {{{|{u_k}(x,t) - {u_k}(y,t){|^{p - 2}}({u_k}(x,t) - {u_k}(y,t))} \over {|x - y{|^{n + ps}}}}\left({{{\partial {u_k}(x,t)} \over {\partial t}} - {{\partial {u_k}(y,t)} \over {\partial t}}} \right)dxdy}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \int_\Omega {f(x,t,{u_k}){{\partial {u_k}} \over {\partial t}}dx}.} \hfill \cr}

According to (3.7), we have 12ddtΩuk(x,t)2dx+12uk(x,t)W0pC5((Ω|uk|2dx)λ/2+Ω|uk|2dx). {1 \over 2}{d \over {dt}}\int_\Omega {{u_k}{{(x,t)}^2}dx + {1 \over 2}\left\| {{u_k}(x,t)} \right\|_{{W_0}}^p} \le {C_5}\left({{{\left({\int_\Omega {{{\left| {{u_k}} \right|}^2}dx}} \right)}^{\lambda /2}} + \int_\Omega {{{\left| {{u_k}} \right|}^2}dx}} \right). Similar to the estimation of b(t), we have (3.11) Ω|uk(x,t)|2dxC(T)t[0,T](T<T0). \matrix{{{{\int_\Omega {\left| {{u_k}(x,t)} \right|}}^2}dx \le C(T)\,} & {\forall t \in [0,T]} & {(T < {T_0})} \cr}. Moreover (3.12) ukLp(0,T;W0)C6. {\left\| {{u_k}} \right\|_{{L^p}\left({0,T;{W_0}} \right)}} \le {C_6}. Hence, we get (3.13) ukL(0,T;L2(Ω;m))C7. {\left\| {{u_k}} \right\|_{{L^\infty}(0,T;{L^2}(\Omega ;{{\mathbb R}^m}))}} \le {C_7}. According to (3.10) and (H1), we get (3.14) Ω|ukt|2dx+QΩ|uk(x,t)uk(y,t)|p2(uk(x,t)uk(y,t))|xy|n+ps(uk(x,t)tuk(y,t)t)dxdyddtΩF(x,t,uk)dxΩFt(x,t,uk)dxα1Ω|uk|qdx+α1. \matrix{{\int_\Omega {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dx}} \hfill \cr {+ \int\!\!\!\int_{{Q_\Omega}} {{{|{u_k}\left({x,t} \right) - {u_k}\left({y,t} \right){|^{p - 2}}\left({{u_k}\left({x,t} \right) - {u_k}\left({y,t} \right)} \right)} \over {|x - y{|^{n + ps}}}}\left({{{\partial {u_k}\left({x,t} \right)} \over {\partial t}} - {{\partial {u_k}\left({y,t} \right)} \over {\partial t}}} \right)dxdy}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\, - {d \over {dt}}\int_\Omega {F\left({x,t,{u_k}} \right)dx} \le \int_\Omega {{F_t}(x,t,{u_k})dx} \le {\alpha_1}\int_\Omega {|{u_k}{|^q}dx + {\alpha_1}.}} \hfill \cr} From the fact 1pddtuk(x,t)W0p=QΩ|uk(x,t)uk(y,t)|p2(uk(x,t)uk(y,t))|xy|n+ps(uk(x,t)tuk(y,t)t)dxdy, \matrix{{{1 \over p}{d \over {dt}}\left\| {{u_k}\left({x,t} \right)} \right\|_{{W_0}}^p} \hfill \cr {= \int\!\!\!\int_{{Q_\Omega}} {{{|{u_k}\left({x,t} \right) - {u_k}\left({y,t} \right){|^{p - 2}}\left({{u_k}\left({x,t} \right) - {u_k}\left({y,t} \right)} \right)} \over {|x - y{|^{n + ps}}}}\left({{{\partial {u_k}\left({x,t} \right)} \over {\partial t}} - {{\partial {u_k}\left({y,t} \right)} \over {\partial t}}} \right)dxdy,}} \hfill \cr} applied to (3.14), we deduce (3.15) Ω|ukt|2dx+ddt(1puk(x,t)W0pΩF(x,t,uk)dx)α1(Ω|uk|qdx+1). \matrix{{\int_\Omega {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dx} + {d \over {dt}}\left({{1 \over p}\left\| {{u_k}(x,t)} \right\|_{{W_0}}^p - \int_\Omega {F(x,t,{u_k})dx}} \right)} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \le {\alpha_1}\left({\int_\Omega {|{u_k}{|^q}dx + 1}} \right).} \hfill \cr} By using the same technique in (3.5) and using (3.11) to the term in the right-hand side of (3.15), we get (3.16) Ω|ukt|2dx+ddt(1puk(x,t)W0pΩF(x,t,uk)dx)α1ɛCps*uk(x,t)W0p+α1C(ɛ)(Ωuk|2dx)λ/2+α1C8(uk(x,t)W0p+1). \matrix{{\int_\Omega {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dx}} \hfill & {+ {d \over {dt}}\left({{1 \over p}\left\| {{u_k}(x,t)} \right\|_{{W_0}}^p - \int_\Omega {F(x,t,{u_k})dx}} \right)} \hfill \cr {} \hfill & {\le {\alpha_1}\epsilon {C_{p_s^*}}\left\| {{u_k}\left({x,t} \right)} \right\|_{{W_0}}^p + {\alpha_1}C(\epsilon){{\left({\int_\Omega {{u_k}{|^2}dx}} \right)}^{\lambda /2}} + {\alpha_1}} \hfill \cr {} \hfill & {\le {C_8}\left({\left\| {{u_k}\left({x,t} \right)} \right\|_{{W_0}}^p + 1} \right).} \hfill \cr} Integrating (3.16) with respect to t from 0 to τ (τ ∈ (0, T ]) and using the strong convergence in uk(x, 0) → u0(x) in W0, we get (3.17) Qτ|ukt|2dxdt+1puk(x,τ)W0pC9(0τuk(x,t)W0pdt+1)+ΩF(x,τ,uk)dx. \matrix{{\int_{{Q_\tau}} {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dxdt + {1 \over p}\left\| {{u_k}\left({x,\tau} \right)} \right\|_{{W_0}}^p}} \hfill & {\le {C_9}\left({\int_0^\tau {\left\| {{u_k}(x,t)} \right\|_{{W_0}}^pdt + 1}} \right)} \hfill \cr {} \hfill & {+ \int_\Omega {F\left({x,\tau,{u_k}} \right)dx.}} \hfill \cr} By assumption (H1) and interpolation inequality used in (3.5), we get (3.18) ΩF(x,τ,uk)dxα1ɛCps*uk(x,τ)W0p+α1C(ɛ)(Ω|uk|2dx)λ/2. \int_\Omega {F(x,\tau,{u_k})dx \le {\alpha_1}\epsilon {C_{p_s^*}}\left\| {{u_k}(x,\tau)} \right\|_{{W_0}}^p + {\alpha_1}C(\epsilon){{\left({\int_\Omega {{{\left| {{u_k}} \right|}^2}dx}} \right)}^{\lambda /2}}}. Plugging (3.18) in (3.17), we arrive at Qτ|ukt|2dxdt+1puk(x,τ)W0pC9(0τuk(x,t)W0pdt+1)+α1ɛCps*uk(x,τ)W0p+α1C(ɛ)(Ω|uk(x,τ)|2dx)λ/2. \matrix{{\int_{{Q_\tau}} {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dxdt + {1 \over p}\left\| {{u_k}\left({x,\tau} \right)} \right\|_{{W_0}}^p \le {C_9}\left({\int_0^\tau {\left\| {{u_k}(x,t)} \right\|_{{W_0}}^pdt + 1}} \right)}} \hfill \cr {\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + {\alpha_1}\epsilon {C_{p_s^*}}\left\| {{u_k}(x,\tau)} \right\|_{{W_0}}^p + {\alpha_1}C(\epsilon){{\left({\int_\Omega {|{u_k}(x,\tau){|^2}dx}} \right)}^{\lambda /2}}.} \hfill \cr} By choosing ɛ=12α1pCps* \epsilon = {1 \over {2{\alpha_1}p{C_{p_s^*}}}} , we get Qτ|ukt|2dxdt+12puk(x,τ)W0pC10(0τuk(x,τ)W0pdt+1). \int_{{Q_\tau}} {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dxdt + {1 \over {2p}}\left\| {{u_k}(x,\tau)} \right\|_{{W_0}}^p} \le {C_{10}}\left({\int_0^\tau {\left\| {{u_k}(x,\tau)} \right\|_{{W_0}}^pdt + 1}} \right). The Gronwall inequality implies that 0τuk(x,t)W0pdtC11 \int_0^\tau {\left\| {{u_k}(x,t)} \right\|_{{W_0}}^pdt \le {C_{11}}} for each τ ∈ [0, T ]. Therefore Qτ|ukt|2dxdt+12puk(x,τ)W0pC12. \int_{{Q_\tau}} {{{\left| {{{\partial {u_k}} \over {\partial t}}} \right|}^2}dxdt + {1 \over {2p}}\left\| {{u_k}(x,\tau)} \right\|_{{W_0}}^p} \le {C_{12}}. We finally get (3.19) uktL2QT+ukL0,T;W0C13. {\left\| {\frac{{\partial {u_k}}}{{\partial t}}} \right\|_{{L^2}\left( {{Q_T}} \right)}} + {\left\| {{u_k}} \right\|_{{L^\infty }\left( {0,T;{W_0}} \right)}} \le {C_{13}}. The assumption (H1) implies that (3.20) fx, t, ukLqQTC14. {\left\| {f\left( {x,\;t,\;{u_k}} \right)} \right\|_{{L^{q'}}\left( {{Q_T}} \right)}} \le {C_{14}}.

Assertion 3: Passage to the limit

By virtue of (3.12), (3.13), (3.19), and (3.20), we get the existence of a subsequence of (uk) still denoted by (uk) such that (3.21) uk*u in L0, T;L2Ω;mL0, T;W0 ,uku in Lp0, T;W0 ,uktut in L2QT;m ,fx, t, ukχ in LqQT, m . \left\{ {\begin{array}{*{20}{l}}{{u_k} \rightharpoonup *\;u\;\;{\rm{in}}\;{L^\infty }\left( {0,\;T;{L^2}\left( {\Omega ;{\mathbb{R}^m}} \right)} \right) \cap {L^\infty }\left( {0,\;T;{W_0}} \right)\;,}\\{{u_k} \rightharpoonup \;u\;\;{\rm{in}}\;{L^p}\left( {0,\;T;{W_0}} \right)\;,}\\{\frac{{\partial {u_k}}}{{\partial t}} \rightharpoonup \frac{{\partial u}}{{\partial t}}\;\;{\rm{in}}\;{L^2}\left( {{Q_T};{\mathbb{R}^m}} \right)\;,}\\{f\left( {x,\;t,\;{u_k}} \right) \rightharpoonup \;\chi \;{\rm{in}}\;{L^{q'}}\left( {{Q_T},\;{\mathbb{R}^m}} \right)\;.}\end{array}} \right. [28, Theorem 5.1] and (3.21) imply that uk → u in Lp(0, T, L2(Ω; ℝm)) and a.e. on QT (for a subsequence), and [28, Lemma 1.3] implies that f(x, t, u) = χ. We can conclude from the continuity in (H1), fx, t, ukukfx, t, uua.e.inQT. f\left( {x,\;t,\;{u_k}} \right){u_k} \to f\left( {x,\;t,\;u} \right)u\;\;\;{\rm{a}}{\rm{.e}}{\rm{.}}\;\;{\rm{in}}\;{Q_T}. Using the Vitali Theorem, we get limkQTfx, t, ukukdxdt=QTfx, t, uudxdt. \mathop {\lim }\limits_{k \to \infty } \int_{{Q_T}} {f\left( {x,\;t,\;{u_k}} \right){u_k}dxdt} = \int_{{Q_T}} {f\left( {x,\;t,\;u} \right)udxdt} . By Ωuk(x, T)2dxC15 \int_\Omega {{u_k}{{(x,\;T)}^2}dx \le {C_{15}}} , we get the existence of a subsequence of (uk) still denoted by (uk) and a function û in L2 (Ω; ℝm) such that uk(x, T) → û in L2 (Ω; ℝm). Then, for any b(t) ∈ C1([0, T ]) and ϕC0Ω \phi \in C_0^\infty \left( \Omega \right) , Quktbϕdxdt=Ωukx, TbTϕdxΩukx, 0b0ϕdxQukbtϕdxdt. \int_Q {\frac{{\partial {u_k}}}{{\partial t}}b\phi dxdt} = \int_\Omega {{u_k}\left( {x,\;T} \right)b\left( T \right)\phi dx} - \int_\Omega {{u_k}\left( {x,\;0} \right)b\left( 0 \right)\phi dx} - \int_Q {{u_k}\frac{{\partial b}}{{\partial t}}\phi dxdt} .

Tending k to , we get Ωu^ux, TbTϕdxΩu0xux, 0b0ϕdx=0. \int_\Omega {\left( {\hat u - u\left( {x,\;T} \right)} \right)b\left( T \right)\phi dx} - \int_\Omega {\left( {{u_0}\left( x \right) - u\left( {x,\;0} \right)} \right)b\left( 0 \right)\phi dx} = 0. Choosing b(T) = 1, b(0) = 0 or b(T) = 0, b(0) = 1, we have û = u(x, T) and u0(x) = u(x, 0).

As stated in the introduction, Young measure is the tool we use to prove the existence of a weak solution. To identify the weak limit, we consider the following lemma:

Lemma 3.4

Suppose that (3.12) holds. Then, the Young measure µ(x,y,t) generated by ukx,tuky,txynp+sLpQΩ×0, T;m \frac{{{u_k}\left( {x,t} \right) - {u_k}\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{n}{p} + s}}}} \in {L^p}\left( {{Q_\Omega } \times \left( {0,\;T} \right);{\mathbb{R}^m}} \right) has the following properties:

  • (a)

    µ(x,y,t)ℳℝm= 1 for a.e. (x, y, t) ∈ QΩ × (0, T), i.e. µ(x,y,t) is a probability measure.

  • (b)

    μx,y,t,id=mλdμx,y,tλ \left\langle {{\mu _{\left( {x,y,t} \right)}},id} \right\rangle = \int_{{\mathbb{R}^m}} {\lambda d{\mu _{\left( {x,y,t} \right)}}\left( \lambda \right)} is the weak L1-limit of ukx,tuky,txynp+s \frac{{{u_k}\left( {x,t} \right) - {u_k}\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{n}{p} + s}}}} .

  • (c)

    μx,y,t,id=ux,tuy,txynp+s \left\langle {{\mu _{\left( {x,y,t} \right)}},id} \right\rangle = \frac{{u\left( {x,t} \right) - u\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{n}{p} + s}}}} for a.e. (x, y, t) ∈ QΩ × (0, T).

Proof

  • (a)

    For simplicity reasons, we consider (3.22) vkx, y, t=ukx,tuky,txynp+sLpQΩ×0, T;m. {v_k}\left( {x,\;y,\;t} \right) = \frac{{{u_k}\left( {x,t} \right) - {u_k}\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{n}{p} + s}}}} \in {L^p}\left( {{Q_\Omega } \times \left( {0,\;T} \right);{\mathbb{R}^m}} \right). We know that for any M > 0, (Ω ∩ BM)2 ⊆ Ω × Ω ⫅̸ QΩ, where BM is the ball centered in 0 with radius M. Let N ∈ ℝ be such that QNx, y, tΩBM×ΩBM×0, T : vkx, y, tN. {Q_N} \equiv \left\{ {\left( {x,\;y,\;t} \right) \in \Omega \cap {B_M} \times \Omega \cap {B_M} \times \left( {0,\;T} \right)\;:\;\left| {{v_k}\left( {x,\;y,\;t} \right)} \right| \ge N} \right\}. Using (3.12), we get vkLpQΩ×0,T;m=0TQΩukx,tuky,tpxyn+psdxdydt1/p=ukLp0,T;W0M. \begin{array}{*{35}{l}} {{\left\| {{v}_{k}} \right\|}_{{{L}^{p}}\left( {{Q}_{\Omega }}\times \left( 0,T \right);{{\mathbb{R}}^{m}} \right)}} & ={{\left( \int_{0}^{T}{\iint_{{{Q}_{\Omega }}}{\frac{{{\left| {{u}_{k}}\left( x,t \right)-{{u}_{k}}\left( y,t \right) \right|}^{p}}}{{{\left| x-y \right|}^{n+ps}}}}dxdydt} \right)}^{1/p}} \\ {} & ={{\left\| {{u}_{k}} \right\|}_{{{L}^{p}}\left( 0,T;{{W}_{0}} \right)}}\le M. \\ \end{array} Consequently, there exists C16 0 such that (3.23) C16QΩ×0,Tvkx, y, tpdxdyQNvkx, y, tpdxdyNpQN, {{C}_{16}}\ge \iint_{{{Q}_{\Omega }}\times \left( 0,T \right)}{{{\left| {{v}_{k}}\left( x,~y,~t \right) \right|}^{p}}dxdy}\ge \iint_{{{Q}_{N}}}{{{\left| {{v}_{k}}\left( x,~y,~t \right) \right|}^{p}}dxdy\ge {{N}^{p}}\left| {{Q}_{N}} \right|}, where |QN | is the Lebesgue measure of QN. According to (3.23), the sequence (vk) satisfies (2.2). Hence, a Young measure noted by µ(x, y, t) is generated by vk such that ∥µ(x, y, t)ℳ(ℝm) = 1 for a.e. (x, y, t) ∈ QΩ × (0, T).

  • (b)

    By (3.12), there exists a subsequence still denoted by (vk) that converges in Lp (QΩ × (0, T); ℝm). Since Lp (QΩ × (0, T); ℝm) is reflexive, then vk is weakly convergent in L1 (QΩ × (0, T); ℝm). By the third assertion in Lemma 2.4, we replace the function ρ by the identity function, to obtain vkμx,y,t,id=mλdμx,y,tλweaklyinL1QΩ×0, T;m. {v_k}\; \rightharpoonup \;\left\langle {{\mu _{\left( {x,y,t} \right)}},id} \right\rangle = \int_{{\mathbb{R}^m}} {\lambda d{\mu _{\left( {x,y,t} \right)}}\left( \lambda \right)\;\;\;{\rm{weakly}}\;{\rm{in}}\;} {L^1}\left( {{Q_\Omega } \times \left( {0,\;T} \right);{\mathbb{R}^m}} \right).

  • (c)

    According to (3.12), vk is bounded in Lp (QΩ × (0, T); ℝm), then there exists a subsequence such that vkv in Lp (QΩ × (0, T); ℝm). Owing to the previous arguments, we get from the uniqueness of limits that μx,y,t,id=vx, y, t=ux,tuy,txynp+sfora.e.x, y, tQΩ×0, T. \left\langle {{\mu _{\left( {x,y,t} \right)}},id} \right\rangle = v\left( {x,\;y,\;t} \right) = \frac{{u\left( {x,t} \right) - u\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{n}{p} + s}}}}\;\;\;{\rm{for}}\;{\rm{a}}{\rm{.e}}{\rm{.}}\;\;\left( {x,\;y,\;t} \right) \in {Q_\Omega } \times \left( {0,\;T} \right).

Now, let {vk} be the sequence given in (3.22), i.e. vkx, y, t=ukx,tuky,txyn+psp. {v_k}\left( {x,\;y,\;t} \right) = \frac{{{u_k}\left( {x,t} \right) - {u_k}\left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{{n + ps}}{p}}}}}. The weak convergence given in Lemma 3.4 shows that (3.24) vkx, y, tp2vkx, y, tmλp2λdμx,y,tλ=vx, y, tp2vx, y, t=ux,tuy,tp2ux,tuy,txyn+psp \begin{array}{*{20}{l}}{{{\left| {{v_k}\left( {x,\;y,\;t} \right)} \right|}^{p - 2}}{v_k}\left( {x,\;y,\;t} \right)}&{ \rightharpoonup \;\int_{{\mathbb{R}^m}} {{{\left| \lambda \right|}^{p - 2}}\lambda d{\mu _{\left( {x,y,t} \right)}}\left( \lambda \right)} }\\{}&{ = {{\left| {v\left( {x,\;y,\;t} \right)} \right|}^{p - 2}}v\left( {x,\;y,\;t} \right)}\\{}&{ = \frac{{{{\left| {u\left( {x,t} \right) - u\left( {y,t} \right)} \right|}^{p - 2}}\left( {u\left( {x,t} \right) - u\left( {y,t} \right)} \right)}}{{{{\left| {x - y} \right|}^{\frac{{n + ps}}{{p'}}}}}}}\end{array} weakly in L1 (QΩ × (0, T); ℝm). Since the space Lp is reflexive and |vk(x, y, t)|p2vk(x, y, t) is bounded in Lp(QΩ × (0, T); ℝm), the sequence |vk(x, y, t)|p2vk(x, y, t) converges in Lp (QΩ × (0, T); ℝm). Hence its weak Lp-limit is also |v(x, y, t)|p2v(x, y, t). Thus, for any φLp(0, T; W0) we have φx,tφy,txyn+pspLpQΩ×0, T;m. \frac{{\varphi \left( {x,t} \right) - \varphi \left( {y,t} \right)}}{{{{\left| {x - y} \right|}^{\frac{{n + ps}}{p}}}}} \in {L^p}\left( {{Q_\Omega } \times \left( {0,\;T} \right);{\mathbb{R}^m}} \right). According to the weak limit in (3.24), we get limk0TQΩukx,tuky,tp2ukx,tuky,txyn+psφx, tφy, tdxdydt=0TQΩux,tuy,tp2ux,tuy,txyn+psφx, tφy, tdxdydt \begin{array}{*{35}{l}} \underset{k\to \infty }{\mathop{\lim }}\,\int_{0}^{T}{\iint_{{{Q}_{\Omega }}}{\frac{{{\left| {{u}_{k}}\left( x,t \right)-{{u}_{k}}\left( y,t \right) \right|}^{p-2}}\left( {{u}_{k}}\left( x,t \right)-{{u}_{k}}\left( y,t \right) \right)}{{{\left| x-y \right|}^{n+ps}}}\left( \varphi \left( x,~t \right)-\varphi \left( y,~t \right) \right)dxdydt}} \\ =\int_{0}^{T}{\iint_{{{Q}_{\Omega }}}{\frac{{{\left| u\left( x,t \right)-u\left( y,t \right) \right|}^{p-2}}\left( u\left( x,t \right)-u\left( y,t \right) \right)}{{{\left| x-y \right|}^{n+ps}}}\left( \varphi \left( x,~t \right)-\varphi \left( y,~t \right) \right)dxdydt}} \\ \end{array} for every φLp(0, T; W0).

From (3.9), for ϕC1 (0, T; UM), M ≤ k, we have QTuktϕdxdt+0TQΩukx,tuky,tp2ukx,tuky,txyn+psϕx, tϕy, tdxdydt=QTfx, t, ukϕdxdt. \begin{array}{*{35}{l}} \int_{{{Q}_{T}}}{\frac{\partial {{u}_{k}}}{\partial t}\phi dxdt} \\ +\ \int_{0}^{T}{\iint_{{{Q}_{\Omega }}}{\frac{{{\left| {{u}_{k}}\left( x,t \right)-{{u}_{k}}\left( y,t \right) \right|}^{p-2}}\left( {{u}_{k}}\left( x,t \right)-{{u}_{k}}\left( y,t \right) \right)}{{{\left| x-y \right|}^{n+ps}}}\left( \phi \left( x,~t \right)-\phi \left( y,~t \right) \right)dxdydt}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\int_{{{Q}_{T}}}{f\left( x,~t,~{{u}_{k}} \right)\phi dxdt}. \\ \end{array} For k tending to , it follows from the above results, that (3.25) QTutϕdxdt+0TQΩux,tuy,tp2ux,tuy,txyn+psϕx, tϕy, tdxdydt=QTfx, t, uϕdxdt. \begin{array}{*{35}{l}} \int_{{{Q}_{T}}}{\frac{\partial u}{\partial t}\phi dxdt} \\ +\ \int_{0}^{T}{\iint_{{{Q}_{\Omega }}}{\frac{{{\left| u\left( x,t \right)-u\left( y,t \right) \right|}^{p-2}}\left( u\left( x,t \right)-u\left( y,t \right) \right)}{{{\left| x-y \right|}^{n+ps}}}\left( \phi \left( x,~t \right)-\phi \left( y,~t \right) \right)dxdydt}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\int_{{{Q}_{T}}}{f\left( x,~t,~u \right)\phi dxdt}. \\ \end{array} for all ϕC10, T;M1UM \phi \in {C^1}\left( {0,\;T;\bigcup\limits_{M \ge 1} {{U_M}} } \right) . Letting M goes to infnity, consequently, (3.25) holds for all ϕC10, T;C0Ω \phi \in {C^1}\left( {0,\;T;C_0^\infty \left( \Omega \right)} \right) .

4.
An example

We consider the following problem ut+(Δ)psu=ax, t|u|q2uin QT=Ω×0, T ,u=0in CscrΩ×0, T ,ux, 0=u0xin Ω, \left\{ {\begin{array}{*{20}{l}}{\frac{{\partial u}}{{\partial t}} + ( - \Delta )_p^su = a\left( {x,\;t} \right)|u{|^{q - 2}}u}&{{\rm{in}}\;{Q_T} = \Omega \times \left( {0,\;T} \right)\;,}\\{u = 0}&{{\rm{in}}\;{\mathcal{C}}\Omega \times \left( {0,\;T} \right)\;,}\\{u\left( {x,\;0} \right) = {u_0}\left( x \right)}&{{\rm{in}}\;\;\Omega ,}\end{array}} \right. comparing it with problem (1.1) where f(x, t, u) = a(x, t) |u|q−2u, Fx, t, u=ax,tquq F\left( {x,\;t,\;u} \right) = \frac{{a\left( {x,t} \right)}}{q}{\left| u \right|^q} , and Ft(x, t, u) ⩾ C(−|r|q 1). If 2<q<ps* 2 < q < p_s^* , then by Theorem 3.2, there exists a constant T0 > 0 such tha the problem (1.1) has a weak solutions as T < T0.

DOI: https://doi.org/10.2478/amsil-2024-0021 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 349 - 367
Submitted on: Jan 20, 2024
Accepted on: Oct 23, 2024
Published on: Nov 15, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Ihya Talibi, Farah Balaadich, Brahim El Boukari, Jalila El Ghordaf, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.