References
- L. Ambrosio, Optimal transport maps in Monge–Kantorovich problem, in: T. Li (ed.), Proceedings of the International Congress of Mathematicians. Vol. III, Higher Education Press, Beijing, 2002, pp. 131–140.
- J. Bentley, Construction of regular non-atomic strictly-positive measures in second-countable non-atomic locally compact Hausdorff spaces, Ann. Math. Sil. 36 (2022), no. 1, 15–25.
- J. Bentley and P. Mikusiński, Localized transfunctions, Int. J. Appl. Math. 31 (2018), no. 6, 689–707.
- J.R. Brown, Approximation theorems for Markov operators, Pacific J. Math. 16 (1966), no. 1, 13–23.
- S. Campi, P. Gronchi, and P. Salani, A proof of a Loomis–Whitney type inequality via optimal transport, J. Math. Anal. Appl. 471 (2019), no. 1–2, 489–495.
- P. Jiménez Guerra and B. Rodríguez-Salinas, A general solution of the Monge–Kantorovich mass-transfer problem, J. Math. Anal. Appl. 202 (1996), no. 2, 492–510.
- H.W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. Quart. 2 (1955), 83–97.
- P. Mikusiński, Transfunctions, arXiv preprint, 2015. Available at arXiv: 1507.03441.
- P. Mikusiński and M.D. Taylor, Markov operators and n-copulas, Ann. Polon. Math. 96 (2009), no. 1, 75–95.
- C. Villani, Optimal Transport: Old and New, Springer-Verlag, Berlin-Heidelberg, 2009.