References
- J. Auslander and J.A. Yorke, Interval maps, factors of maps and chaos, Tohoku Math. J. (2) 32 (1980), 177–188.
- A. Bobrowski, T. Lipniacki, K. Pichór, and R. Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression, J. Math. Anal. Appl. 333 (2007), 753–769.
- A. Bobrowski and R. Rudnicki, On convergence and asymptotic behaviour of semi-groups of operators, Philos. Trans. Roy. Soc. A 378 (2020), 20190613, 18 pp.
- F. Comets, S. Popov, G.M. Schütz, and M. Vachkovskaia, Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal. 191 (2009), 497–537.
- M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), 353–388.
- R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publishing Company, Redwood City, CA, 1989.
- H.M. Hilden and L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), 557–565.
- A. Lasota, Invariant measures and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 40–48.
- A. Lasota, Stable and chaotic solutions of a first order partial differential equation, Nonlinear Anal. 5 (1981), 1181–1193.
- A. Lasota, Asymptotic stability of some nonlinear Boltzmann-type equations, J. Math. Anal. Appl. 268 (2002), 291–309.
- A. Lasota and M.C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci., 97, Springer-Verlag, New York, 1994.
- A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151–159.
- A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.
- A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Polish Acad. Sci. Math. 25 (1977), 233–238.
- A. Lasota and J. Yorke, Exact dynamical systems and the Frobenius–Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375–384.
- A. Lasota and J. Yorke, When the long time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221–240.
- B. Lods, M. Mokhtar-Kharroubi, and R. Rudnicki, Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), 877–923.
- M.C. Mackey and R. Rudnicki, Asymptotic similarity and Malthusian growth in autonomous and nonautonomous populations, J. Math. Anal. Appl. 187 (1994), 548–566.
- M.C. Mackey and R. Rudnicki, A new criterion for global stability of cell simultaneous cell replication and maturation processes, J. Math. Biol. 38 (1999), 195–219.
- M. Mokhtar-Kharroubi and R. Rudnicki, On asymptotic stability and sweeping of collisionless kinetic equations, Acta Appl. Math. 147 (2017), 19–38.
- G. Pianigiani and J.A. Yorke, Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351–366.
- K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl. 249 (2000), 668–685.
- K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. 436 (2016), 305–321.
- K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stoch. Dyn. 18 (2018), 1850001, 18 pp.
- K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein’s neuronal model, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 377–385.
- K. Pichór and R. Rudnicki, Applications of stochastic semigroups to cell cycle models, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), 2365–2381.
- K. Pichór and R. Rudnicki, Dynamics of antibody levels: asymptotic properties, Math. Methods Appl. Sci. 43 (2020), 10490–10499.
- K. Pichór and R. Rudnicki, Cell cycle length and long-time behavior of an age-size model, Math. Methods Appl. Sci. 45 (2022), 5797–5820.
- K. Pichór and R. Rudnicki, Asymptotic properties of a general model of immune status, SIAM J. Appl. Math. 83 (2023), 172–193.
- R. Rudnicki, Invariant measures for the flow of a first order partial differential equation, Ergodic Theory Dynam. Systems 5 (1985), 437–443.
- R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Polish Acad. Sci. Math. 34 (1986), 181–187.
- R. Rudnicki, Strong ergodic properties of a first-order partial differential equation, J. Math. Anal. Appl. 133 (1988), 14–26.
- R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245–262.
- R. Rudnicki, Chaos for some infinite-dimensional dynamical systems, Math. Methods Appl. Sci. 27 (2004), 723–738.
- R. Rudnicki, Chaoticity of the blood cell production system, Chaos 19 (2009), 043112, 6 pp.
- R. Rudnicki, Chaoticity and invariant measures for a cell population model, J. Math. Anal. Appl. 393 (2012), 151–165.
- R. Rudnicki, An ergodic theory approach to chaos, Discrete Contin. Dyn. Syst. 35 (2015), 757–770.
- R. Rudnicki, Models and Methods Mathematical Biology. Part II: Probabilistic Models, (in Polish), Księgozbiór Matematyczny 4, IMPAN, Warszawa, 2022. (Modele i Metody Biologii Matematycznej. Część II: Modele Probabilistyczne.)
- R. Rudnicki, Ergodic properties of a semilinear partial differential equation, J. Differential Equations 372 (2023), 235–253.
- R. Rudnicki and A. Tomski, On a stochastic gene expression with pre-mRNA, mRNA and protein contribution, J. Theoret. Biol. 387 (2015), 54–67.
- R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs Appl. Sci. Technol., Math. Methods, Springer, Cham, 2017.
- R. Rudnicki and P. Zwoleński, Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol. 70 (2015), 1295–1321.