Have a personal or library account? Click to login
Fixed Point and Best Proximity Point Results in PIV-S-Metric Spaces Cover

Fixed Point and Best Proximity Point Results in PIV-S-Metric Spaces

By: Mohammad Asim and  Mohammad Imdad  
Open Access
|Jun 2024

References

  1. M.S. Asil, S. Sedghi, and Z.D. Mitrović, Partial S-metric spaces and coincidence points, Filomat 33 (2019), no. 14, 4613–4626.
  2. M. Asim, M. Imdad, and S. Radenović, Fixed point results in extended rectangular b-metric spaces with an application, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 2, 43–50.
  3. M. Asim, A.R. Khan, and M. Imdad, Fixed point results in partial symmetric spaces with an application, Axioms 8 (2019), no. 1, 13, 15 pp.
  4. M. Asim, A.R. Khan, and M. Imdad, Rectangular Mb-metric spaces and fixed point results, J. Math. Anal. 10 (2019), no. 1, 10–18.
  5. M. Aslantaş, H. Sahin, and U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. Gen. Topol. 23 (2022), no. 1, 169–178.
  6. I.A. Bakhtin, The contraction mapping principle in almost metric space (in Russian), in: A.V. Shtraus (ed.), Functional Analysis, No. 30 (in Russian), Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1989, pp. 26–37.
  7. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.
  8. A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), no. 1–2, 31–37.
  9. S. Chandok, D. Kumar, and C. Park, C-algebra-valued partial metric space and fixed point theorems, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 3, Paper No. 37, 9 pp. DOI: 10.1007/s12044-019-0481-0.
  10. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5–11.
  11. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240.
  12. L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
  13. M. Iranmanesh, S. Radenović, and F. Soleimany, Common fixed point theorems in partial idempotent-valued metric spaces, Fixed Point Theory 22 (2021), no. 1, 241–249.
  14. M. Iranmanesh, F. Soleimany, and S. Radenović, Some results on fixed points and best approximation in partial idempotent-valued metric spaces, Scientific Publications of the State University of Novi Pazar Ser. A: Appl. Math. Inform. and Mech. 11 (2019), no. 2, 61–74.
  15. T. Kamran, M. Samreen, and Q.U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics 5 (2017), no. 2, 19, 7 pp.
  16. Z. Ma and L. Jiang, C-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2015), 2015:222, 12 pp.
  17. Z. Ma, L. Jiang, and H. Sun, C-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2014), 2014:206, 11 pp.
  18. S.G. Matthews, Partial metric topology, in: S. Andima et al. (eds.), Papers on General Topology and Applications, Ann. New York Acad. Sci., 728, New York Academy of Sciences, New York, 1994, pp. 183–197.
  19. N. Mlaiki, M. Asim, and M. Imdad, C-algebra valued partial b-metric spaces and fixed point results with an application, Mathematics 8 (2020), no. 8, 1381, 11 pp. DOI: 10.3390/math8081381.
  20. S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258–266.
  21. S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), no. 2, 703–711.
DOI: https://doi.org/10.2478/amsil-2024-0014 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 46 - 63
Submitted on: Aug 23, 2023
Accepted on: May 10, 2024
Published on: Jun 7, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Mohammad Asim, Mohammad Imdad, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.