References
- M.S. Asil, S. Sedghi, and Z.D. Mitrović, Partial S-metric spaces and coincidence points, Filomat 33 (2019), no. 14, 4613–4626.
- M. Asim, M. Imdad, and S. Radenović, Fixed point results in extended rectangular b-metric spaces with an application, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81 (2019), no. 2, 43–50.
- M. Asim, A.R. Khan, and M. Imdad, Fixed point results in partial symmetric spaces with an application, Axioms 8 (2019), no. 1, 13, 15 pp.
- M. Asim, A.R. Khan, and M. Imdad, Rectangular Mb-metric spaces and fixed point results, J. Math. Anal. 10 (2019), no. 1, 10–18.
- M. Aslantaş, H. Sahin, and U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. Gen. Topol. 23 (2022), no. 1, 169–178.
- I.A. Bakhtin, The contraction mapping principle in almost metric space (in Russian), in: A.V. Shtraus (ed.), Functional Analysis, No. 30 (in Russian), Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 1989, pp. 26–37.
- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. 3 (1922), 133–181.
- A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57 (2000), no. 1–2, 31–37.
- S. Chandok, D. Kumar, and C. Park, C∗-algebra-valued partial metric space and fixed point theorems, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 3, Paper No. 37, 9 pp. DOI: 10.1007/s12044-019-0481-0.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993), 5–11.
- K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234–240.
- L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
- M. Iranmanesh, S. Radenović, and F. Soleimany, Common fixed point theorems in partial idempotent-valued metric spaces, Fixed Point Theory 22 (2021), no. 1, 241–249.
- M. Iranmanesh, F. Soleimany, and S. Radenović, Some results on fixed points and best approximation in partial idempotent-valued metric spaces, Scientific Publications of the State University of Novi Pazar Ser. A: Appl. Math. Inform. and Mech. 11 (2019), no. 2, 61–74.
- T. Kamran, M. Samreen, and Q.U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics 5 (2017), no. 2, 19, 7 pp.
- Z. Ma and L. Jiang, C∗-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2015), 2015:222, 12 pp.
- Z. Ma, L. Jiang, and H. Sun, C∗-algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. (2014), 2014:206, 11 pp.
- S.G. Matthews, Partial metric topology, in: S. Andima et al. (eds.), Papers on General Topology and Applications, Ann. New York Acad. Sci., 728, New York Academy of Sciences, New York, 1994, pp. 183–197.
- N. Mlaiki, M. Asim, and M. Imdad, C∗-algebra valued partial b-metric spaces and fixed point results with an application, Mathematics 8 (2020), no. 8, 1381, 11 pp. DOI: 10.3390/math8081381.
- S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), no. 3, 258–266.
- S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math. 11 (2014), no. 2, 703–711.