Have a personal or library account? Click to login
Symmetrization for Mixed Operators Cover
By: Sabri Bahrouni  
Open Access
|Apr 2024

References

  1. A. Alvino, G. Trombetti, and P.-L. Lions, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989), no. 2, 185–220.
  2. S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 5, 1611–1641.
  3. S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, A Hong–Krahn–Szegö inequality for mixed local and nonlocal operators, Math. Eng. 5 (2022), no. 1, Paper No. 014, 25 pp.
  4. S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), no. 3, 585–629. DOI: 10.1080/03605302.2021.1998908.
  5. S. Biagi, S. Dipierro, E. Valdinoci, and E. Vecchi, A Faber–Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), no. 2, 405–448.
  6. L. Brasco, E. Lindgren, and E. Parini, The fractional Cheeger problem, Interfaces Free Bound. 16 (2014), no. 3, 419–458.
  7. C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), no. 2, 657–699.
  8. D. Chen and H. Li, Talenti's comparison theorem for Poisson equation and applications on Riemannian manifold with nonnegative Ricci curvature, J. Geom. Anal. 33 (2023), Paper No. 123, 20 pp. DOI: 10.1007/s12220-022-01162-0.
  9. [9] Z.-Q. Chen, P. Kim, R. Song, and Z. Vondraček, Sharp Green function estimates for Δ+Δα2 \Delta + {\Delta^{\frac{\alpha}{2}}} in C1, 1 open sets and their applications, Illinois J. Math. 54 (2010), no. 3, 981–1024.
    ChenZ.-Q. KimP. SongR. VondračekZ. Sharp Green function estimates for Δ+Δα2 \Delta + {\Delta^{\frac{\alpha}{2}}} in C1, 1 open sets and their applications Illinois J. Math. 54 2010 3 981 1024
  10. Z.-Q. Chen and T. Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diflusions with jumps, Rev. Mat. Iberoam. 26 (2010), no. 2, 551–589.
  11. V. Ferone and B. Volzone, Symmetrization for fractional elliptic problems: a direct approach, Arch. Ration. Mech. Anal. 239 (2021), no. 3, 1733–1770.
  12. V. Ferone and B. Volzone, Symmetrization for fractional nonlinear elliptic problems, Discrete Contin. Dyn. Syst. 43 (2023), no. 3–4, 1400–1419.
  13. H. Hajaiej and K. Perera, Ground state and least positive energy solutions of elliptic problems involving mixed fractional p-Laplacians, Differential Integral Equations 35 (2022), no. 3–4, 173–190.
  14. S. Kesavan, Some remarks on a result of Talenti, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 453–465.
  15. T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17, Acta Univ. Wratislav. No. 2029 (1997), no. 2, 339–364.
  16. E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Providence, RI, 2001.
  17. P.-L. Lions, Quelques remarques sur la symétrisation de Schwartz, in: H. Brézis, J.-L. Lions (eds.), Nonlinear Partial Diflerential Equations and Their Applications. Collège de France Seminar. Vol. I, Res. Notes in Math., 53, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981, pp. 308–319.
  18. P. Mironescu and W. Sickel, A Sobolev non embedding, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (2015), no. 3, 291–298.
  19. G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 4, 697–718.
DOI: https://doi.org/10.2478/amsil-2024-0013 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 64 - 75
Submitted on: Oct 16, 2023
Accepted on: Mar 25, 2024
Published on: Apr 27, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Keywords:

© 2024 Sabri Bahrouni, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.