References
- M. Balcerowski, On a problem of T. Szostok on functions with monotonic di˙erences, Aequationes Math. 85 (2013), no. 1–2, 165–167.
- N.G. de Brujin, Functions whose di˙erences belong to a given class, Nieuw Arch. Wiskunde (2) 23 (1951), 194–218.
- M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN – Uniwersytet ‚Śląski, Warszawa-Kraków-Katowice, 1985.
- G. Maksa and Z. Páles, Decomposition of higher-order Wright-convex functions, J. Math. Anal. Appl. 359 (2009), no. 2, 439–443.
- C.T. Ng, Functions generating Schur-convex sums, in: W. Walter (ed.), General Inequalities, 5 (Oberwolfach, 1986), International Series of Numerical Mathematics, 80, Birkhäuser, Basel-Boston, 1987, pp. 433–438.
- Z. Páles, An elementary proof for the decomposition theorem of Wright convex functions, Ann. Math. Sil 34 (2020), no. 1, 142–150.
- T. Rajba, A generalization of multiple Wright-convex functions via randomization, J. Math. Anal. Appl. 388 (2012), no. 1, 548–565.
- T. Szostok, 4. Problem. Report of Meeting. The Fifth Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities, February 2–5, 2005, B¦dlewo, Poland, Ann. Math. Sil. 19 (2005), 65–78.
- T. Szostok, 5. Problem. Report of Meeting. The Forty-fourth International Symposium on Functional Equations, May 14–20, 2006, Lousiville, USA, Aequationes Math. 73 (2007), no. 1–2, 172–200.
- T. Szostok, On ω-convex functions, in: H. Hudzik et al. (eds.), Function Spaces IX, Banach Center Publications, 92, Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2011, pp. 351–359.
- E.M. Wright, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620–622.