Have a personal or library account? Click to login
Closure Operations on Intuitionistic Linear Algebras Cover

Closure Operations on Intuitionistic Linear Algebras

Open Access
|Mar 2024

References

  1. D. Buşneag, D. Piciu, and A. Jeflea, Archimedean residuated lattices, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 56 (2010), no. 2, 227–252. DOI: 10.2478/v10157-010-0017-5
  2. M.K. Chakraborty and J. Sen, MV-algebras embedded in a CL-algebra, Internat. J. Approx. Reason. 18 (1998), no. 3–4, 217–229. DOI: 10.1016/S0888-613X(98)00007-3
  3. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Second Ed., Cambridge University Press, New York, 2002.
  4. J. Elliott, Rings, Modules and Closure Operations, Springer Monographs in Mathematics, Springer, Cham, 2019. DOI: 10.1007/978-3-030-24401-9
  5. N. Epstein, A guide to closure operations in commutative algebra, in: C. Francisco et al. (eds.), Progress in Commutative Algebra 2, Walter de Gruyter GmbH & Co. KG, Berlin, 2012, pp. 1–37.
  6. N. Galatos, P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, 151, Elsevier B. V., Amsterdam, 2007.
  7. J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987), no. 1, 101 pp. DOI: 10.1016/0304-3975(87)90045-4
  8. O.A. Heubo and J.B. Nganou, Closure operations on MV-algebras, Fuzzy Sets and Systems 418 (2021), 139–152.
  9. A. Higuchi, Lattices of closure operators, Discrete Math. 179 (1998), no. 1–3, 267–272.
  10. S. Islam, A. Sanyal, and J. Sen, Filter theory of IL-algebras, J. Calcutta Math. Soc. 16 (2020), no. 2, 113–126.
  11. S. Islam, A. Sanyal, and J. Sen, Fuzzy filters of IL-algebras, Soft Comput. 26 (2022), no. 15, 7017–7027. DOI: 10.1007/s00500-022-06985-1
  12. S. Islam, A. Sanyal, and J. Sen, Topological IL-algebras, Soft Comput. 26 (2022), no. 17, 8335–8349. DOI: 10.1007/s00500-022-07258-7
  13. Y.C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems 133 (2003), no. 3, 277–297.
  14. J.M. Ko and Y.C. Kim, Closure operators on BL-algebras, Commun. Korean Math. Soc. 19 (2004), no. 2, 219–232.
  15. M. Kondo, Characterization of extended filters in residuated lattices, Soft Comput. 18 (2014), no. 3, 427–432. DOI: 10.1007/s00500-013-1100-0
  16. D.S. Macnad, Modal operators on Heyting algebras, Algebra Universalis 12 (1981), no. 1, 5–29.
  17. D. Salounova and J. Rachunek, A lattice-theoretical approch to extensions of filters in algebras of substructural logic, J. Algebr. Hyperstruct. Log. Algebras 3 (2022), no. 1, 5–14. DOI: 10.52547/HATEF.JAHLA.3.1.2
  18. D. Spirito, Closure operations and star operations in commutative rings, Master’s Thesis, Università degli Studi Roma Tre, 2012.
  19. Y.L.J. Tenkeu and C.T. Nganteu, On the lattice of filters of Intuitionistic Linear algebras, Trans. Fuzzy Sets Syst. 2 (2023), no. 1, 72–91. DOI: 10.30495/tfss.2022.1966200.1046
  20. A.S. Troelstra, Lectures on Linear Logic, CSLI Lecture Notes, 29, Stanford University, Center for the Study of Language and Information, Stanford, CA, 1992.
  21. P.V. Venkatanarasimhan, Stone’s topology for pseudocomplemented and bicomplemented lattices, Trans. Amer. Math. Soc. 170 (1972), 57–70.
  22. M. Ward, The closure operators of a lattice, Ann. of Math. (2) 43 (1942), no. 2, 191–196.
DOI: https://doi.org/10.2478/amsil-2024-0007 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 351 - 380
Submitted on: Apr 3, 2023
Accepted on: Feb 5, 2024
Published on: Mar 20, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Y.L. Tenkeu Jeufack, E.R. Alomo Temgoua, O.A. Heubo-Kwegna, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.