Have a personal or library account? Click to login
Steklov Type Operators and Functional Equations Cover

Steklov Type Operators and Functional Equations

Open Access
|Feb 2024

References

  1. U. Abel and M. Ivan, Asymptotic approximation with a sequence of positive linear operators, J. Comput. Anal. Appl. 3 (2001), no. 4, 331–341.
  2. U. Abel and M. Ivan, Asymptotic expansion of a sequence of divided di˙erences with application to positive linear operators, J. Comput. Anal. Appl. 7 (2005), no. 1, 89–101.
  3. A.-M. Acu, M. Dancs, M. Heilmann, V. Paşca, and I. Rasa, Voronovskaya type results for special sequences of operators, Rev. R. Acad. Cienc. Exactas F±. Nat. Ser. A Mat. RACSAM 116 (2022), no. 1, Paper No. 19, 13 pp.
  4. A.-M. Acu, M. Dancs, M. Heilmann, V. Paşca, and I. Raşa, A Bernstein-Schnabl type operator: applications to di˙erence equations, Appl. Anal. Discrete Math. 16 (2022), no. 2, 495–507.
  5. A.-M. Acu, M. Heilmann, and I. Rasa, Some results for the inverse of a Bernstein-Schnabl type operator, Anal. Math. Phys. 13 (2023), no. 1, Paper No. 15, 14 pp.
  6. J. Brzdęk, D. Popa, I. Raşa, and B. Xu, Ulam Stability of Operators, Mathematical Analysis and its Applications, Academic Press, London, 2018.
  7. M. Campiti, I. Raşa, and C. Tacelli, Steklov operators and their associated semigroups, Acta Sci. Math. (Szeged) 74 (2008), no. 1–2, 171–189.
  8. M. Campiti, I. Raşa, C. Tacelli, Steklov operators and semigroups in weighted spaces of continuous real functions, Acta Math. Hungar. 120 (2008), no. 1–2, 103–125.
  9. S. Hodiş, L. Mesaroş, and I. Raşa, Smoothness and shape preserving properties of Bernstein semigroup, Mediterr. J. Math. 15 (2018), no. 3, Paper No. 96, 10 pp.
  10. M. Ivan and I. Raşa, A sequence of positive linear operators, Rev. Anal. Numér. Théor. Approx. 24 (1995), no. 1–2, 159–164.
  11. N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1–2, 193–199.
  12. K. Nikodem and T. Rajba, Ohlin and Levin-Stečkin-type results for strongly convex functions, Ann. Math. Sil. 34 (2020), no. 1, 123–132.
  13. D. Popa and I. Raşa, The Fréchet functional equation with applications to the stability of certain operators, J. Approx. Theory 164 (2012), no. 1, 138–144.
  14. D. Popa and I. Raşa, Steklov averages as positive linear operators, Filomat 30 (2016), no. 5, 1195–1201. DOI: 10.2298/FIL1605195P
  15. I. Raşa, Korovkin approximation and parabolic functions, Confer. Sem. Mat. Univ. Bari (1991), no. 236, 25 pp.
  16. I. Raşa, Probabilistic positive linear operators, Studia Univ. Babeş-Bolyai Math. 40 (1995), no. 1, 33–38.
  17. P.K. Sahoo and T. Riedel, Mean Value Theorems and Functional Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
  18. T. Vladislav and I. Raşa, Analiza Numerica. Aproximare, Problema Lui Cauchy Abstracta, Proiectori Altomare, Editura Tehnica, Bucuresti, 1999.
DOI: https://doi.org/10.2478/amsil-2024-0006 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 57 - 63
Submitted on: Nov 9, 2023
Accepted on: Jan 28, 2024
Published on: Feb 15, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Gabriela Motronea, Dorian Popa, Ioan Raşa, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.