Have a personal or library account? Click to login
On a Certain Polish Mathematician: A Brief Summary of Scientific Research and Achievements of Kazimierz Nikodem, Professor of Mathematics Cover

On a Certain Polish Mathematician: A Brief Summary of Scientific Research and Achievements of Kazimierz Nikodem, Professor of Mathematics

Open Access
|Mar 2024

References

  1. K. Baron, J. Matkowski, and K. Nikodem, A sandwich with convexity, Math. Pannon. 5 (1994), no. 1, 139–144.
  2. Gy. Maksa, K. Nikodem, and Zs. Páles, Results on t-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 274–278.
  3. N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1–2, 193–199.
  4. N. Merentes, K. Nikodem, and S. Rivas, Remarks on strongly Wright-convex functions, Ann. Polon. Math. 102 (2011), no. 3, 271–278.
  5. K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), no. 2–3, 184–197.
  6. K. Nikodem, On quadratic stochastic processes, Aequationes Math. 21 (1980), no. 2–3, 192–199.
  7. K. Nikodem, Midpoint convex functions majorized by midpoint concave functions, Aequationes Math. 32 (1987), no. 1, 45–51.
  8. K. Nikodem, On Jensen’s functional equation for set-valued functions, Rad. Mat. 3 (1987), no. 1, 23–33.
  9. K Nikodem, K-convex and K-concave set-valued functions (Habilitation dissertation), Zeszyty Nauk. Politech. Łódz. Mat. 559 (Rozprawy Nauk. 114), Łódź, 1989, 75 pp.
  10. K. Nikodem, On the support of midconvex operators, Aequationes Math. 42 (1991), no. 2–3, 182–189.
  11. K. Nikodem, A characterization of quasi-arithmetic set-valued means, Linear Nonlinear Anal. 8 (2022), no. 2, 147–154.
  12. K. Nikodem and C.T. Ng, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 103–108.
  13. K. Nikodem and Zs. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011), no. 1, 83–87.
  14. K. Nikodem and T. Rajba, Ohlin and Levin-Stečkin - type results for strongly convex functions, Ann. Math. Sil. 34 (2020), no. 1, 123–132.
  15. K. Nikodem and Sz. Wąsowicz, A sandwich theorem and Hyers–Ulam stability of affine functions, Aequationes Math. 49 (1995), no. 1–2, 160–164.
DOI: https://doi.org/10.2478/amsil-2024-0005 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 1 - 11
Submitted on: Nov 2, 2023
Accepted on: Jan 25, 2024
Published on: Mar 20, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Mirosław Adamek, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.