Have a personal or library account? Click to login
New Upper Bounds for the Weighted Chebyshev Functional Cover

New Upper Bounds for the Weighted Chebyshev Functional

Open Access
|Jan 2024

References

  1. S. Abramovich, M. Klaričić Bakula, M. Matić, and J. Pečarić, A variant of Jensen-Steffensen’s inequality and quasi-arithmetic means, J. Math. Anal. Appl. 307 (2005), no. 1, 370–386.
  2. D.S. Mitrinović, J.E. Pečarić, and A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
  3. J.E. Pečarić, On the Ostrowski generalization of Čebyšev’s inequality, J. Math. Anal. Appl. 102 (1984), no. 2, 479–487.
  4. J.E. Pečarić, F. Proschan, and Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, 187, Academic Press, Inc., Boston, MA, 1992.
  5. J.F. Steffensen, On certain inequalities and methods of approximation, J. Inst. Actuaries 51 (1919), no. 3, 274–297.
  6. J.F. Steffensen, En Ulighed mellem Middelve edier, Mat. Tidsskrift B (1920), 49–53.
DOI: https://doi.org/10.2478/amsil-2023-0030 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 37 - 56
Submitted on: Aug 27, 2023
Accepted on: Dec 19, 2023
Published on: Jan 10, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Milica Klaričić Bakula, Josip Pečarić, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.