References
- W.N. Anderson and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra 18 (1985), no. 2, 141–145.
- D. Archambault, T. Munzner, and D. Auber, TopoLayout: Multilevel graph layout by topological features, IEEE Trans. Vis. Comput. Graph. 13 (2007), no. 2, 305–317.
- D. Archambault, T. Munzner, and D. Auber, GrouseFlocks: Steerable exploration of graph hierarchy space, IEEE Trans. Vis. Comput. Graph. 14 (2008), no. 4, 900–913.
- M. Arezoomand and B. Taeri, Zagreb indices of the generalized hierarchical product of graphs, MATCH Commun. Math. Comput. Chem. 69 (2013), no. 1, 131–140.
- L. Barrière, C. Dalfó, M.A. Fiol, and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009), no. 12, 3871–3881.
- J. Braun, A. Kerber, M. Meringer, and C. Rücker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 1, 163–176.
- Q. Ding, W. Sun, and F. Chen, Applications of Laplacian spectra on a 3-prism graph, Modern Phys. Lett. B. 28 (2014), no. 2, 1450009, 12 pp.
- M. Eliasi and A. Iranmanesh, The hyper-Wiener index of the generalized hierarchical product of graphs, Discrete Appl. Math. 159 (2011), no. 8, 866–871.
- M. Eliasi, Gh. Raeisi, and B. Taeri, Wiener index of some graph operations, Discrete Appl. Math. 160 (2012), no. 9, 1333–1344.
- J. Feigenbaum and A.A. Schäffer, Finding the prime factors of strong direct product graphs in polynomial time, Discrete Math. 109 (1992), no. 1–3, 77–102.
- D.C. Fisher, J. Ryan, G. Domke, and A. Majumdar, Fractional domination of strong direct products, Discrete Appl. Math. 50 (1994), no. 1, 89–91.
- I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), no. 4, 535–538.
- R.S. Hales, Numerical invariants and the strong product of graphs, J. Combinatorial Theory Ser. B 15 (1973), 146–155.
- R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, CRC Press, Boca Raton, FL, 2011.
- Y.P. Hong, R.A. Horn, and C.R. Johnson, On the reduction of pairs of Hermitian or symmetric matrices to diagonal form by congruence, Linear Algebra Appl. 73 (1986), 213–226.
- A. Kaveh and H. Fazli, Approximate eigensolution of Laplacian matrices for locally modified graph products, J. Comput. Appl. Math. 236 (2011), no. 6, 1591–1603.
- A. Kaveh and K. Koohestani, Graph products for configuration processing of space structures, Comput. Struct. 86 (2008), no. 11–12, 1219–1231.
- A. Kaveh and R. Mirzaie, Minimal cycle basis of graph products for the force method of frame analysis, Comm. Numer. Methods Engrg. 24 (2008), no. 8, 653–669.
- M.H. Khalifeh, H. Yousefi-Azari, and A.R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl. 56 (2008), no. 5, 1402–1407.
- M.H. Khalifeh, H. Yousefi-Azari, and A.R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009), no. 4, 804–811.
- S. Klavžar, Strong products of χ-critical graphs, Aequationes Math. 45 (1993), no. 2–3, 153–162.
- S. Klavžar and U. Milutinović, Strong products of Kneser graphs, Discrete Math. 133 (1994), no. 1–3, 297–300.
- J.-B. Liu, J. Cao, A. Alofi, A. AL-Mazrooei, and A. Elaiw, Applications of Laplacian spectra for n-prism networks, Neurocomputing 198 (2016), 69–73.
- Z. Luo, Applications on hyper-Zagreb index of generalized hierarchical product graphs, J. Comput. Theor. Nanosci. 13 (2016), no. 10, 7355–7361.
- S. Nikolić, G. Kovačević, A Miličević, and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003), no. 2, 113–124.
- K. Pattabiraman, S. Nagarajan, and M. Chendrasekharan, Zagreb indices and coindices of product graphs, J. Prime Res. Math. 10 (2014), 80–91.
- G. Sabidussi, Graph multiplication, Math. Z. 72 (1959), 446–457.
- S. Špacapan, Connectivity of strong products of graphs, Graphs Combin. 26 (2010), no. 3, 457–467.
- B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004), 113–118.
- B. Zhou and I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004), no. 1–3, 93–95.
- B. Zhou and I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005), no. 1, 233–239.