References
- Y. Alp and E.G. Koçer, Hybrid Leonardo numbers, Chaos Solitons Fractals 150 (2021), Paper No. 111128, 5 pp.
- Y. Alp and E.G. Koçer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), no. 1, 183–189.
- A.T. Benjamin and J.J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, DC, 2003.
- M. Bicknell-Johnson, Divisibility properties of the Fibonacci numbers minus one, generalized to Cn = Cn−1 + Cn−2 + k, Fibonacci Quart. 28 (1990), no. 2, 107–112.
- M. Bicknell-Johnson and G.E. Bergum, The generalized Fibonacci numbers {Cn}, Cn = Cn−1 + Cn−2 + k, in: A.N. Philippou et al. (eds.), Applications of Fibonacci Numbers, Kluwer Academic Publishers, Dordrecht, 1988, pp. 193–205.
- D. Birmajer, J.B. Gil, and M.D. Weiner, (an + b)-color compositions, Congr. Numer. 228 (2017), 245–251.
- P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), Paper No. A43, 7 pp.
- E.W. Dijkstra, Fibonacci numbers and Leonardo numbers, EWD797, University of Texas at Austin, 1981. Available at www.cs.utexas.edu.
- E.W. Dijkstra, Smoothsort, an alternative for sorting in situ, Sci. Comput. Programming 1 (1981), no. 3, 223–233.
- T. Goy and M. Shattuck, Determinant formulas of some Toeplitz–Hessenberg matrices with Catalan entries, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 4, Paper No. 46, 17 pp.
- T. Goy and M. Shattuck, Determinants of Toeplitz–Hessenberg matrices with generalized Fibonacci entries, Notes Number Theory Discrete Math. 25 (2019), no. 4, 83–95.
- T. Goy and M. Shattuck, Determinants of some Hessenberg–Toeplitz matrices with Motzkin number entries, J. Integer Seq. 26 (2023), no. 3, Art. 23.3.4, 21 pp.
- T. Goy and M. Shattuck, Hessenberg–Toeplitz matrix determinants with Schröder and Fine number entries, Carpathian Math. Publ. 15 (2023), no. 2, 420–436.
- Z. İşbilir, M. Akyiğit, and M. Tosun, Pauli–Leonardo quaternions, Notes Number Theory Discrete Math. 29 (2023), no. 1, 1–16.
- N. Kara and F. Yilmaz, On hybrid numbers with Gaussian Leonardo coefficients, Mathematics 11 (2023), no. 6, Paper No. 1551, 12 pp.
- A. Karataş, On complex Leonardo numbers, Notes Number Theory Discrete Math. 28 (2022), no. 3, 458–465.
- K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integers 22 (2022), Paper No. A48, 7 pp.
- F. Kürüz, A. Dağdeviren, and P. Catarino, On Leonardo Pisano hybrinomials, Mathematics 9 (2021), no. 22, Paper No. 2923, 9 pp.
- M. Merca, A note on the determinant of a Toeplitz–Hessenberg matrix, Spec. Matrices 1 (2013), 10–16.
- T. Muir, The Theory of Determinants in the Historical Order of Development. Vol. 3, Dover Publications, Mineola, NY, 1960.
- A.G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (2019), no. 3, 97–101.
- A.G. Shannon and Ö. Deveci, A note on generalized and extended Leonardo sequences, Notes Number Theory Discrete Math. 28 (2022), no. 1, 109–114.
- M. Shattuck, Combinatorial proofs of identities for the generalized Leonardo numbers, Notes Number Theory Discrete Math. 28 (2022), no. 4, 778–790.
- N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org, 2023.
- Y. Soykan, Generalized Leonardo numbers, J. Progressive Res. Math. 18 (2021), no. 4, 58–84.
- R.P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997.
- E. Tan and H.-H. Leung, On Leonardo p-numbers, Integers 23 (2023), Paper No. A7, 11 pp.
- R.P.M. Vieira, M.C.S. Mangueira, F.R.V. Alves, and P.M.M.C. Catarino, The generalization of Gaussians and Leonardo’s octonions, Ann. Math. Sil. 37 (2023), no. 1, 117–137.