Have a personal or library account? Click to login
Determinants of Toeplitz–Hessenberg Matrices with Generalized Leonardo Number Entries Cover

Determinants of Toeplitz–Hessenberg Matrices with Generalized Leonardo Number Entries

By: Taras Goy and  Mark Shattuck  
Open Access
|Jan 2024

References

  1. Y. Alp and E.G. Koçer, Hybrid Leonardo numbers, Chaos Solitons Fractals 150 (2021), Paper No. 111128, 5 pp.
  2. Y. Alp and E.G. Koçer, Some properties of Leonardo numbers, Konuralp J. Math. 9 (2021), no. 1, 183–189.
  3. A.T. Benjamin and J.J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America, Washington, DC, 2003.
  4. M. Bicknell-Johnson, Divisibility properties of the Fibonacci numbers minus one, generalized to Cn = Cn−1 + Cn−2 + k, Fibonacci Quart. 28 (1990), no. 2, 107–112.
  5. M. Bicknell-Johnson and G.E. Bergum, The generalized Fibonacci numbers {Cn}, Cn = Cn−1 + Cn−2 + k, in: A.N. Philippou et al. (eds.), Applications of Fibonacci Numbers, Kluwer Academic Publishers, Dordrecht, 1988, pp. 193–205.
  6. D. Birmajer, J.B. Gil, and M.D. Weiner, (an + b)-color compositions, Congr. Numer. 228 (2017), 245–251.
  7. P. Catarino and A. Borges, A note on incomplete Leonardo numbers, Integers 20 (2020), Paper No. A43, 7 pp.
  8. E.W. Dijkstra, Fibonacci numbers and Leonardo numbers, EWD797, University of Texas at Austin, 1981. Available at www.cs.utexas.edu.
  9. E.W. Dijkstra, Smoothsort, an alternative for sorting in situ, Sci. Comput. Programming 1 (1981), no. 3, 223–233.
  10. T. Goy and M. Shattuck, Determinant formulas of some Toeplitz–Hessenberg matrices with Catalan entries, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 4, Paper No. 46, 17 pp.
  11. T. Goy and M. Shattuck, Determinants of Toeplitz–Hessenberg matrices with generalized Fibonacci entries, Notes Number Theory Discrete Math. 25 (2019), no. 4, 83–95.
  12. T. Goy and M. Shattuck, Determinants of some Hessenberg–Toeplitz matrices with Motzkin number entries, J. Integer Seq. 26 (2023), no. 3, Art. 23.3.4, 21 pp.
  13. T. Goy and M. Shattuck, Hessenberg–Toeplitz matrix determinants with Schröder and Fine number entries, Carpathian Math. Publ. 15 (2023), no. 2, 420–436.
  14. Z. İşbilir, M. Akyiğit, and M. Tosun, Pauli–Leonardo quaternions, Notes Number Theory Discrete Math. 29 (2023), no. 1, 1–16.
  15. N. Kara and F. Yilmaz, On hybrid numbers with Gaussian Leonardo coefficients, Mathematics 11 (2023), no. 6, Paper No. 1551, 12 pp.
  16. A. Karataş, On complex Leonardo numbers, Notes Number Theory Discrete Math. 28 (2022), no. 3, 458–465.
  17. K. Kuhapatanakul and J. Chobsorn, On the generalized Leonardo numbers, Integers 22 (2022), Paper No. A48, 7 pp.
  18. F. Kürüz, A. Dağdeviren, and P. Catarino, On Leonardo Pisano hybrinomials, Mathematics 9 (2021), no. 22, Paper No. 2923, 9 pp.
  19. M. Merca, A note on the determinant of a Toeplitz–Hessenberg matrix, Spec. Matrices 1 (2013), 10–16.
  20. T. Muir, The Theory of Determinants in the Historical Order of Development. Vol. 3, Dover Publications, Mineola, NY, 1960.
  21. A.G. Shannon, A note on generalized Leonardo numbers, Notes Number Theory Discrete Math. 25 (2019), no. 3, 97–101.
  22. A.G. Shannon and Ö. Deveci, A note on generalized and extended Leonardo sequences, Notes Number Theory Discrete Math. 28 (2022), no. 1, 109–114.
  23. M. Shattuck, Combinatorial proofs of identities for the generalized Leonardo numbers, Notes Number Theory Discrete Math. 28 (2022), no. 4, 778–790.
  24. N.J.A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Published electronically at https://oeis.org, 2023.
  25. Y. Soykan, Generalized Leonardo numbers, J. Progressive Res. Math. 18 (2021), no. 4, 58–84.
  26. R.P. Stanley, Enumerative Combinatorics. Vol. 1, Cambridge University Press, Cambridge, 1997.
  27. E. Tan and H.-H. Leung, On Leonardo p-numbers, Integers 23 (2023), Paper No. A7, 11 pp.
  28. R.P.M. Vieira, M.C.S. Mangueira, F.R.V. Alves, and P.M.M.C. Catarino, The generalization of Gaussians and Leonardo’s octonions, Ann. Math. Sil. 37 (2023), no. 1, 117–137.
DOI: https://doi.org/10.2478/amsil-2023-0027 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 284 - 313
Submitted on: Aug 22, 2023
Accepted on: Dec 11, 2023
Published on: Jan 10, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Taras Goy, Mark Shattuck, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.