Have a personal or library account? Click to login
Generalized Polynomials on Semigroups Cover
By: Bruce Ebanks  
Open Access
|Jan 2024

References

  1. J. Aczél, J. Baker, D.Ž. Djoković, Pl. Kannappan, and F. Radó, Extensions of certain homomorphisms of semigroups to homomorphisms of groups, Aequationes Math. 6 (1971), no. 2-3, 263–271.
  2. J.M. Almira and E.V. Shulman, On polynomial functions on non-commutative groups, J. Math. Anal. Appl. 458 (2018), no. 1, 875–888.
  3. A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, RI, 1961.
  4. D.Ž. Djoković, A representation theorem for (X1 − 1)(X2 − 1) · · · (Xn − 1) and its applications, Ann. Polon. Math. 22 (1969), no. 2, 189–198.
  5. M. Laczkovich, Polynomial mappings on Abelian groups, Aequationes Math. 68 (2004), no. 3, 177–199.
  6. A. Nagy, Special Classes of Semigroups, Adv. Math. (Dordr.), 1, Kluwer Academic Publishers, Dordrecht, 2001.
  7. E. Shulman, Each semipolynomial on a group is a polynomial, J. Math. Anal. Appl. 479 (2019), no. 1, 765–772.
  8. L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991.
  9. L. Székelyhidi, On the extension of exponential polynomials, Math. Bohem. 125 (2000), no. 3, 365–370.
DOI: https://doi.org/10.2478/amsil-2023-0026 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 18 - 28
Submitted on: Jul 19, 2023
Accepted on: Dec 11, 2023
Published on: Jan 10, 2024
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Bruce Ebanks, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.