Have a personal or library account? Click to login
On Almost Everywhere K-Additive Set-Valued Maps Cover

On Almost Everywhere K-Additive Set-Valued Maps

Open Access
|Dec 2023

References

  1. N.G. de Bruijn, On almost additive functions, Colloq. Math. 15 (1966), 59–63.
  2. J. Chmieliński and J. Rätz, Orthogonality equation almost everywhere, Publ. Math. Debrecen 52 (1998), no. 3-4, 317–335.
  3. J.L. Denny, Sufficient conditions for a family of probabilities to be exponential, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1184–1187.
  4. J.L. Denny, Cauchy’s equation and sufficient statistics on arcwise connected spaces, Ann. Math. Statist. 41 (1970), 401–411.
  5. P. Erdös, P 310, Colloq. Math. 7 (1960), no. 2, p. 311.
  6. R. Ger, Note on almost additive functions, Aequationes Math. 17 (1978), no. 1, 73–76.
  7. R. Ger, Almost additive functions on semigroups and a functional equation, Publ. Math. Debrecen 26 (1979), no. 3-4, 219–228.
  8. E. Jabłońska and W. Jabłoński, Properties of K–additive set–valued maps, Results Math. 78 (2023), no. 6, Paper No. 221, 18 pp.
  9. E. Jabłońska and K. Nikodem, K–subadditive and K–superadditive set–valued functions bounded on "large" sets, Aequationes Math. 95 (2021), no. 6, 1221–1231.
  10. W.B. Jurkat, On Cauchy’s functional equation, Proc. Amer. Math. Soc. 16 (1965), 683–686.
  11. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality, PWN–Uniwersytet Śląski, Warszawa–Kraków–Katowice, 1985. 2nd edition: Birkhäuser, Basel–Boston–Berlin, 2009.
  12. K. Nikodem, K-convex and K-concave Set-valued Functions, Zeszyty Nauk. Politechniki Łódzkiej Mat. 559; Rozprawy Mat. 114, Łódź, 1989.
DOI: https://doi.org/10.2478/amsil-2023-0025 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 29 - 36
Submitted on: Jun 27, 2023
|
Accepted on: Dec 5, 2023
|
Published on: Dec 13, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Eliza Jabłońska, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.