Have a personal or library account? Click to login
Bidimensional Extensions of Cobalancing and Lucas-Cobalancing Numbers Cover

Bidimensional Extensions of Cobalancing and Lucas-Cobalancing Numbers

Open Access
|Nov 2023

References

  1. A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), no. 2, 98–105.
  2. F. Bezerra, F. Alves, and R. Vieira, Relações recorrentes bidimensionais e tridimensionais de Narayana, C.Q.D. – Revista Eletrónica Paulista de Matemática 18 (2020), Ediçaõ Iniciaçaõ Cientifica Julho, 12–28.
  3. S. Bouroubi, On the square-triangular and balancing-numbers, Rostock. Math. Kolloq. 72 (2019/20), 73–80.
  4. P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89 (2019), no. 1, 75–86.
  5. P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform. 45 (2015), 11–24.
  6. P. Catarino and P. Vasco, The generalized order-m(k-Pell) numbers, An. fitiinµ. Univ. Al. I. Cuza Ia³i. Mat. (N.S.) 66 (2020), no. 1, 55–65.
  7. J. Chimpanzo, P. Catarino, P. Vasco, and A. Borges, Bidimensional extensions of balancing and Lucas-balancing numbers, J. Discrete Math. Sci. Cryptogr. Accepted.
  8. G.K. Gözeri, A. Özkoç, and A. Tekcan, Some algebraic relations on balancing numbers, Util. Math. 103 (2017), 217–236.
  9. R. Keskin and O. Karaatlı, Some new properties of balancing numbers and square triangular numbers, J. Integer Seq. 15 (2012), no. 1, Article 12.1.4, 13 pp.
  10. C. Kızılate³, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos Solitons Fractals 130 (2020), 109449, 5 pp.
  11. K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42 (2004), no. 4, 330–340.
  12. K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav. 14 (2006), no. 1, 43–47.
  13. K. Liptai, F. Luca, Á. Pintér, and L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.) 20 (2009), no. 1, 87–100.
  14. P. Olajos, Properties of balancing, cobalancing and generalized balancing numbers, Ann. Math. Inform. 37 (2010), 125–138.
  15. R. Oliveira and F. Alves, Os números Gaussianos de Fibonacci e relações recorrentes bidimensionais, Revista Thema 16 (2019), no. 4, 745–754.
  16. R. Oliveira, F. Alves, and R. Paiva, Identidades bi e tridimensionais para os números de Fibonacci na forma complexa, C.Q.D. – Revista Eletrónica Paulista de Matemática 11 (2017), Dezembro 2017, 91–106.
  17. G.K. Panda and P.K. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci. 2005 (2005), no. 8, 1189–1200.
  18. G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), no. 1, 41–72.
  19. P.K. Ray, Balancing and Cobalancing Numbers, Ph.D. Thesis, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
  20. P.K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering Journal 9 (2018), no. 3, 395–402.
  21. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at OEIS
  22. R. Vieira, F. Alves, and P. Catarino, Relações bidimensionais e identidades da sequência de Leonardo, Revista Sergipana de Matemática e Educação Matemática 4 (2019), no. 2, 156–173.
DOI: https://doi.org/10.2478/amsil-2023-0022 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 241 - 262
Submitted on: Mar 25, 2023
Accepted on: Nov 17, 2023
Published on: Nov 29, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 J. Chimpanzo, M.V. Otero-Espinar, A. Borges, P. Vasco, P. Catarino, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.