References
- A. Behera and G.K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999), no. 2, 98–105.
- F. Bezerra, F. Alves, and R. Vieira, Relações recorrentes bidimensionais e tridimensionais de Narayana, C.Q.D. – Revista Eletrónica Paulista de Matemática 18 (2020), Ediçaõ Iniciaçaõ Cientifica Julho, 12–28.
- S. Bouroubi, On the square-triangular and balancing-numbers, Rostock. Math. Kolloq. 72 (2019/20), 73–80.
- P. Catarino and A. Borges, On Leonardo numbers, Acta Math. Univ. Comenian. (N.S.) 89 (2019), no. 1, 75–86.
- P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Ann. Math. Inform. 45 (2015), 11–24.
- P. Catarino and P. Vasco, The generalized order-m(k-Pell) numbers, An. fitiinµ. Univ. Al. I. Cuza Ia³i. Mat. (N.S.) 66 (2020), no. 1, 55–65.
- J. Chimpanzo, P. Catarino, P. Vasco, and A. Borges, Bidimensional extensions of balancing and Lucas-balancing numbers, J. Discrete Math. Sci. Cryptogr. Accepted.
- G.K. Gözeri, A. Özkoç, and A. Tekcan, Some algebraic relations on balancing numbers, Util. Math. 103 (2017), 217–236.
- R. Keskin and O. Karaatlı, Some new properties of balancing numbers and square triangular numbers, J. Integer Seq. 15 (2012), no. 1, Article 12.1.4, 13 pp.
- C. Kızılate³, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos Solitons Fractals 130 (2020), 109449, 5 pp.
- K. Liptai, Fibonacci balancing numbers, Fibonacci Quart. 42 (2004), no. 4, 330–340.
- K. Liptai, Lucas balancing numbers, Acta Math. Univ. Ostrav. 14 (2006), no. 1, 43–47.
- K. Liptai, F. Luca, Á. Pintér, and L. Szalay, Generalized balancing numbers, Indag. Math. (N.S.) 20 (2009), no. 1, 87–100.
- P. Olajos, Properties of balancing, cobalancing and generalized balancing numbers, Ann. Math. Inform. 37 (2010), 125–138.
- R. Oliveira and F. Alves, Os números Gaussianos de Fibonacci e relações recorrentes bidimensionais, Revista Thema 16 (2019), no. 4, 745–754.
- R. Oliveira, F. Alves, and R. Paiva, Identidades bi e tridimensionais para os números de Fibonacci na forma complexa, C.Q.D. – Revista Eletrónica Paulista de Matemática 11 (2017), Dezembro 2017, 91–106.
- G.K. Panda and P.K. Ray, Cobalancing numbers and cobalancers, Int. J. Math. Math. Sci. 2005 (2005), no. 8, 1189–1200.
- G.K. Panda and P.K. Ray, Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bull. Inst. Math. Acad. Sin. (N.S.) 6 (2011), no. 1, 41–72.
- P.K. Ray, Balancing and Cobalancing Numbers, Ph.D. Thesis, Department of Mathematics, National Institute of Technology, Rourkela, India, 2009.
- P.K. Ray, On the properties of k-balancing numbers, Ain Shams Engineering Journal 9 (2018), no. 3, 395–402.
- N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at OEIS
- R. Vieira, F. Alves, and P. Catarino, Relações bidimensionais e identidades da sequência de Leonardo, Revista Sergipana de Matemática e Educação Matemática 4 (2019), no. 2, 156–173.