References
- J. Atkins and R. Geist, Fibonacci numbers and computer algorithms, College Math. J. 18 (1987), no. 4, 328–336.
- U. Bednarz, A. Włoch, and M. Wołowiec-Musiał, Distance Fibonacci numbers, their interpretations and matrix generators, Comm. Math. 53 (2013), no 1, 35–46.
- U. Bednarz, I. Włoch, and M. Wołowiec-Musiał, Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pp.
- D. Bród, K. Piejko, and I. Włoch, Distance Fibonacci numbers, distance Lucas numbers and their applications, Ars Combin. 112 (2013), 397–409.
- D. Bród and A. Włoch, (2, k)-distance Fibonacci polynomials, Symmetry 13 (2021), no. 2, Paper No. 303, 10 pp.
- R. Diestel, Graph Theory, Springer-Verlag, Heidelberg-New York, 2005.
- M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22 (1984), no. 3, 204–207.
- S. Falcón, Binomial transform of the generalized k-Fibonacci numbers, Comm. Math. Appl. 10 (2019), no. 3, 643–651.
- S. Falcón and Á. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2007), no. 1, 38–49.
- A.J. Feingold, A hyperbolic GCM Lie algebra and the Fibonacci numbers, Proc. Amer. Math. Soc. 80 (1980), no. 3, 379–385.
- M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. Assoc. Comput. Mach. 34 (1987), no. 3, 596–615.
- A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly 68 (1961), 455–459.
- D.V. Jaiswal, On a generalized Fibonacci sequence, Labdev–J. Sci. Tech. Part A 7 (1969), 67–71.
- E. Kiliç, The generalized order-k Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math. 209 (2007), no. 2, 133–145.
- T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
- M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels in graphs, Ars Combin. 55 (2000), 139–146.
- G.-Y. Lee, S.-G. Lee, J.-S. Kim, and H.-K. Shin, The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart. 39 (2001), no. 2, 158–164.
- N.Y. Li and T. Mansour, An identity involving Narayana numbers, European J. Combin. 29 (2008), no. 3, 672–675.
- E. Özkan, B. Kulo§lu, and J.F. Peters, k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity, Chaos Solitons Fractals 153 (2021), Paper No. 111473, 11 pp.
- E. Özkan, N. Şeyma Yilmaz, and A. Włoch, On F3(k, n)-numbers of the Fibonacci type, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 77, 18 pp.
- G. Sburlati, Generalized Fibonacci sequences and linear congruences, Fibonacci Quart. 40 (2002), no. 5, 446–452.
- M. Schork, Generalized Heisenberg algebras and k-generalized Fibonacci numbers, J. Phys. A 40 (2007), no. 15, 4207–4214.
- N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org/book.html
- J. de Souza, E.M.F. Curado, and M.A. Rego-Monteiro, Generalized Heisenberg algebras and Fibonacci series, J. Phys. A 39 (2006), no. 33, 10415–10425.
- Y. Soykan, Generalized Fibonacci numbers: sum formulas, J. Adv. Math. Comp. Sci. 35 (2020), no. 1, 89–104.
- I. Stojmenovic, Recursive algorithms in computer science courses: Fibonacci numbers and binomial coefficients, IEEE Trans. Educ. 43 (2000), no. 3, 273–276.
- S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, Acta Appl. Math. 112 (2010), no. 3, 323–346.
- A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013), no. 10, 5564–5568.
- I. Włoch, U. Bednarz, D. Bród, A. Włoch, and M. Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Appl. Math. 161 (2013), no. 16-17, 2695–2701.
- I. Włoch and A. Włoch, On some multinomial sums related to the Fibonacci type numbers, Tatra Mt. Math. Publ. 77 (2020), 99–108.