Have a personal or library account? Click to login
On Doubled and Quadrupled Fibonacci Type Sequences Cover

On Doubled and Quadrupled Fibonacci Type Sequences

Open Access
|Nov 2023

References

  1. J. Atkins and R. Geist, Fibonacci numbers and computer algorithms, College Math. J. 18 (1987), no. 4, 328–336.
  2. U. Bednarz, A. Włoch, and M. Wołowiec-Musiał, Distance Fibonacci numbers, their interpretations and matrix generators, Comm. Math. 53 (2013), no 1, 35–46.
  3. U. Bednarz, I. Włoch, and M. Wołowiec-Musiał, Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Art. ID 837917, 7 pp.
  4. D. Bród, K. Piejko, and I. Włoch, Distance Fibonacci numbers, distance Lucas numbers and their applications, Ars Combin. 112 (2013), 397–409.
  5. D. Bród and A. Włoch, (2, k)-distance Fibonacci polynomials, Symmetry 13 (2021), no. 2, Paper No. 303, 10 pp.
  6. R. Diestel, Graph Theory, Springer-Verlag, Heidelberg-New York, 2005.
  7. M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22 (1984), no. 3, 204–207.
  8. S. Falcón, Binomial transform of the generalized k-Fibonacci numbers, Comm. Math. Appl. 10 (2019), no. 3, 643–651.
  9. S. Falcón and Á. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos Solitons Fractals 33 (2007), no. 1, 38–49.
  10. A.J. Feingold, A hyperbolic GCM Lie algebra and the Fibonacci numbers, Proc. Amer. Math. Soc. 80 (1980), no. 3, 379–385.
  11. M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. Assoc. Comput. Mach. 34 (1987), no. 3, 596–615.
  12. A.F. Horadam, A generalized Fibonacci sequence, Amer. Math. Monthly 68 (1961), 455–459.
  13. D.V. Jaiswal, On a generalized Fibonacci sequence, Labdev–J. Sci. Tech. Part A 7 (1969), 67–71.
  14. E. Kiliç, The generalized order-k Fibonacci-Pell sequence by matrix methods, J. Comput. Appl. Math. 209 (2007), no. 2, 133–145.
  15. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
  16. M. Kwaśnik and I. Włoch, The total number of generalized stable sets and kernels in graphs, Ars Combin. 55 (2000), 139–146.
  17. G.-Y. Lee, S.-G. Lee, J.-S. Kim, and H.-K. Shin, The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart. 39 (2001), no. 2, 158–164.
  18. N.Y. Li and T. Mansour, An identity involving Narayana numbers, European J. Combin. 29 (2008), no. 3, 672–675.
  19. E. Özkan, B. Kulo§lu, and J.F. Peters, k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity, Chaos Solitons Fractals 153 (2021), Paper No. 111473, 11 pp.
  20. E. Özkan, N. Şeyma Yilmaz, and A. Włoch, On F3(k, n)-numbers of the Fibonacci type, Bol. Soc. Mat. Mex. (3) 27 (2021), no. 3, Paper No. 77, 18 pp.
  21. G. Sburlati, Generalized Fibonacci sequences and linear congruences, Fibonacci Quart. 40 (2002), no. 5, 446–452.
  22. M. Schork, Generalized Heisenberg algebras and k-generalized Fibonacci numbers, J. Phys. A 40 (2007), no. 15, 4207–4214.
  23. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences. Available at https://oeis.org/book.html
  24. J. de Souza, E.M.F. Curado, and M.A. Rego-Monteiro, Generalized Heisenberg algebras and Fibonacci series, J. Phys. A 39 (2006), no. 33, 10415–10425.
  25. Y. Soykan, Generalized Fibonacci numbers: sum formulas, J. Adv. Math. Comp. Sci. 35 (2020), no. 1, 89–104.
  26. I. Stojmenovic, Recursive algorithms in computer science courses: Fibonacci numbers and binomial coefficients, IEEE Trans. Educ. 43 (2000), no. 3, 273–276.
  27. S. Wagner and I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, Acta Appl. Math. 112 (2010), no. 3, 323–346.
  28. A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Appl. Math. Comput. 219 (2013), no. 10, 5564–5568.
  29. I. Włoch, U. Bednarz, D. Bród, A. Włoch, and M. Wołowiec-Musiał, On a new type of distance Fibonacci numbers, Discrete Appl. Math. 161 (2013), no. 16-17, 2695–2701.
  30. I. Włoch and A. Włoch, On some multinomial sums related to the Fibonacci type numbers, Tatra Mt. Math. Publ. 77 (2020), 99–108.
DOI: https://doi.org/10.2478/amsil-2023-0020 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 336 - 350
Submitted on: Jan 20, 2023
Accepted on: Nov 7, 2023
Published on: Nov 22, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Nur Şeyma Yilmaz, Andrzej Włoch, Engin Özkan, Dominik Strzałka, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.