Have a personal or library account? Click to login
Strongly MφMψ -Convex Functions, The Hermite–Hadamard–Fejér Inequality and Related Results Cover

Strongly MφMψ -Convex Functions, The Hermite–Hadamard–Fejér Inequality and Related Results

Open Access
|Nov 2023

References

  1. M.W. Alomari, Some properties of h-MN-convexity and Jensen’s type inequalities, J . Interdiscip. Math. 22 (2019), no. 8, 1349–1395.
  2. A. Azócar, K. Nikodem, and G. Roa, Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43–54.
  3. M. Bombardelli and S. Varošanec, MφMψ -convexity and separation theorems, J. Inequal. Appl. 2022 (2022), Paper No. 65, 7 pp.
  4. M. Bracamonte, J. Giménez, and J. Medina, Sandwich theorem for reciprocally strongly convex functions, Rev. Colombiana Mat. 52 (2018), no. 2, 171–184.
  5. A. El Farissi, Simple proof and refinement of Hermite–Hadamard inequality, J. Math. Inequal. 4 (2010), no. 3, 365–369.
  6. M. Feng, J. Ruan, and X. Ma, Hermite–Hadamard type inequalities for multidimensional strongly h-convex functions, Math. Inequal. Appl. 24 (2021), no. 4, 897–911.
  7. J.-B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin, 2001.
  8. N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1-2, 193–199.
  9. F.C. Mitroi and C.I. Spiridon, Hermite–Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64) (2012), no. 3, 291–295.
  10. C. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer, New York, 2006.
  11. M.A. Noor, K.I. Noor, and S. Iftikhar, Hermite–Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct. 7 (2016), no. 3, 99–113.
  12. B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl. 7 (1966), 72–75.
  13. T. Rajba and Sz. W¡sowicz, Probabilistic characterization of strong convexity, Opus-cula Math. 31 (2011), no. 1, 97–103.
  14. S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly GA-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 178–183.
  15. S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly p-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 184–189.
  16. S. Turhan M. Kunt, and İ. İşcan, Hermite–Hadamard type inequalities for Mφ A-convex functions, International Journal of Mathematical Modelling & Computations 10 (2020), no. 1, 57–75.
  17. S. Turhan, S. Maden, A.K. Demirel, and I. Iscan, Hermite–Hadamard type inequality for Mφ A-strongly convex functions, New Trends Math. Sci. 6 (2018), no. 4, 127–133.
  18. S. Varošanec, Mφ A-h-convexity and Hermite–Hadamard type inequalities, Int. J. Anal. Appl. 20 (2022), Paper No. 36, 14 pp.
DOI: https://doi.org/10.2478/amsil-2023-0019 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 195 - 213
Submitted on: Apr 12, 2023
Accepted on: Oct 24, 2023
Published on: Nov 22, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Mea Bombardelli, Sanja Varošanec, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.