References
- M.W. Alomari, Some properties of h-MN-convexity and Jensen’s type inequalities, J . Interdiscip. Math. 22 (2019), no. 8, 1349–1395.
- A. Azócar, K. Nikodem, and G. Roa, Fejér-type inequalities for strongly convex functions, Ann. Math. Sil. 26 (2012), 43–54.
- M. Bombardelli and S. Varošanec, MφMψ -convexity and separation theorems, J. Inequal. Appl. 2022 (2022), Paper No. 65, 7 pp.
- M. Bracamonte, J. Giménez, and J. Medina, Sandwich theorem for reciprocally strongly convex functions, Rev. Colombiana Mat. 52 (2018), no. 2, 171–184.
- A. El Farissi, Simple proof and refinement of Hermite–Hadamard inequality, J. Math. Inequal. 4 (2010), no. 3, 365–369.
- M. Feng, J. Ruan, and X. Ma, Hermite–Hadamard type inequalities for multidimensional strongly h-convex functions, Math. Inequal. Appl. 24 (2021), no. 4, 897–911.
- J.-B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Springer-Verlag, Berlin, 2001.
- N. Merentes and K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), no. 1-2, 193–199.
- F.C. Mitroi and C.I. Spiridon, Hermite–Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep. (Bucur.) 14(64) (2012), no. 3, 291–295.
- C. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics, 23, Springer, New York, 2006.
- M.A. Noor, K.I. Noor, and S. Iftikhar, Hermite–Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct. 7 (2016), no. 3, 99–113.
- B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restictions, Soviet Math. Dokl. 7 (1966), 72–75.
- T. Rajba and Sz. W¡sowicz, Probabilistic characterization of strong convexity, Opus-cula Math. 31 (2011), no. 1, 97–103.
- S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly GA-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 178–183.
- S. Turhan, A.K. Demirel, S. Maden, and I. Iscan, Hermite–Hadamard type integral inequalities for strongly p-convex functions, Proc. International Conference on Mathematics and Mathematics Education (ICMME 2018), Turk. J. Math. Comput. Sci. 10 (2018), 184–189.
- S. Turhan M. Kunt, and İ. İşcan, Hermite–Hadamard type inequalities for Mφ A-convex functions, International Journal of Mathematical Modelling & Computations 10 (2020), no. 1, 57–75.
- S. Turhan, S. Maden, A.K. Demirel, and I. Iscan, Hermite–Hadamard type inequality for Mφ A-strongly convex functions, New Trends Math. Sci. 6 (2018), no. 4, 127–133.
- S. Varošanec, Mφ A-h-convexity and Hermite–Hadamard type inequalities, Int. J. Anal. Appl. 20 (2022), Paper No. 36, 14 pp.