Have a personal or library account? Click to login
On Transcendental Entire Solution of Fermat-Type Trinomial and Binomial Equations Under Restricted Hyper-Order Cover

On Transcendental Entire Solution of Fermat-Type Trinomial and Binomial Equations Under Restricted Hyper-Order

Open Access
|Nov 2023

References

  1. W. Bergweiler and J.K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 1, 133–147.
  2. Y.-M. Chiang and S.-J. Feng, On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane, Ramanujan J. 16 (2008), no. 1, 105–129.
  3. F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc. 72 (1966), 86–88.
  4. F. Gross, On the functional equation fn + gn = hn, Amer. Math. Monthly 73 (1966), no. 10, 1093–1096.
  5. F. Gross, On the equation fn + gn = 1. II, Bull. Amer. Math. Soc. 74 (1968), no. 4, 647–648.
  6. F. Gross, Factorization of Meromorphic Functions, Mathematics Research Center, Naval Research Laboratory, Washington, DC, 1972.
  7. R.G. Halburd and R.J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl. 314 (2006), no. 2, 477–487.
  8. W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
  9. P.-C. Hu and C.-C. Yang, Uniqueness of meromorphic functions onm, Complex Variables Theory Appl. 30 (1996), no. 3, 235–270.
  10. K. Liu, I. Laine, L. Yang, Complex Delay-Differential Equations, De Gruyter, Berlin, 2021.
  11. K. Liu, L. Ma, and X. Zhai, The generalized Fermat type difference equations, Bull. Korean Math. Soc. 55 (2018), no. 6, 1845–1858.
  12. K. Liu and L. Yang, On entire solutions of some differential-difference equations, Comput. Methods Funct. Theory 13 (2013), no. 3, 433–447.
  13. K. Liu and L. Yang, A note on meromorphic solutions of Fermat types equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 62, vol. 1 (2016), no. 2, 317–325.
  14. E.G. Saleeby, On complex analytic solutions of certain trinomial functional and partial differential equations, Aequationes Math. 85 (2013), no. 3, 553–562.
  15. W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, Amer. Math. Soc., Providence, RI, 1974.
  16. A.J. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551.
  17. C.-C. Yang and H.-X. Yi, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing/New York, 2003.
  18. Z. Ye, On Nevanlinna’s second main theorem in projective space, Invent. Math. 122 (1995), no. 3, 475–507.
  19. M. Zhang, J. Xiao, and M. Fang, Entire solutions for several Fermat type differential difference equations, AIMS Math. 7 (2022), no. 7, 11597–11613.
DOI: https://doi.org/10.2478/amsil-2023-0018 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 177 - 194
Submitted on: Aug 22, 2023
Accepted on: Oct 18, 2023
Published on: Nov 22, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Abhijit Banerjee, Jhuma Sarkar, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.