Have a personal or library account? Click to login
New Pexiderizations of Drygas’ Functional Equation on Abelian Semigroups Cover

New Pexiderizations of Drygas’ Functional Equation on Abelian Semigroups

By: Youssef Aissi and  Driss Zeglami  
Open Access
|Aug 2023

Abstract

Let (S, +) be an abelian semigroup, let (H, +) be an abelian group which is uniquely 2-divisible, and let ϕ be an endomorphism of S. We find the solutions f, h : S H of each of the functional equations f(x+y)+f(x+ϕ(y))=h(x)+f(y)+fϕ(y),x,yS,f(x+y)+f(x+ϕ(y))=h(x)+2f(y),x,yS, \matrix{ {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + f\left( y \right) + f \circ \varphi \left( y \right),\,x,y \in S,} \hfill \cr {f\left( {x + y} \right) + f\left( {x + \varphi \left( y \right)} \right) = h\left( x \right) + 2f\left( y \right),\,x,y \in S,} \hfill \cr } in terms of additive and bi-additive maps. Moreover, as applications, we determine the solutions of some related functional equations.

DOI: https://doi.org/10.2478/amsil-2023-0015 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 169 - 184
Submitted on: Oct 20, 2022
Accepted on: Aug 10, 2023
Published on: Aug 29, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Youssef Aissi, Driss Zeglami, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.