Have a personal or library account? Click to login
Fuzzy Weak Filters of Sheffer Stroke Hilbert Algebras Cover

Fuzzy Weak Filters of Sheffer Stroke Hilbert Algebras

Open Access
|Jul 2023

References

  1. G. Birkhoff, Lattice Theory, third edition, Proceedings of the American Mathematical Society, Providence, R.I., 1967.
  2. I. Chajad, Sheffer operation in ortholattices, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 44 (2005), no. 1, 19–23. http://dml.cz/dmlcz/133381
  3. Y.B. Jun and T. Oner, Weak filters and multipliers in Sheffer stroke Hilbert algebras, An. fitiinµ. Univ. “Ovidius” Constanµa Ser. Mat. (submitted).
  4. T. Katican. Branches and obstinate SBE-filters of Sheffer stroke BE-algebras, Bull. Int. Math. Virtual Inst. 12 (2022), no. 1, 41–50. DOI: 10.7251/BIMVI2201041K
  5. V. Kozarkiewicz and A. Grabowski, Axiomatization of Boolean algebras based on Sheffer stroke, Formalized Mathematics 12 (2004), no. 3, 355–361.
  6. T. Oner, T. Kalkan, and A. Borumand Saeid, Class of Sheffer stroke BCK-algebras, An. fitiinµ. Univ. “Ovidius” Constanµa Ser. Mat. 30 (2022), no. 1, 247–269. DOI: 10.2478/auom-2022-0014
  7. T. Oner, T. Katican, and A. Borumand Saeid, Fuzzy filters of Sheffer stroke Hilbert algebras, Journal of Intelligent & Fuzzy Systems 40 (2021), no. 1, 759–772. DOI: 10.3233/JIFS-200760
  8. T. Oner, T. Katican, and A. Borumand Saeid, Relation between Sheffer stroke and Hilbert algebras, Categ. Gen. Algebr. Struct. Appl. 14 (2021), no. 1, 245–268. DOI: 10.29252/CGASA.14.1.245
  9. T. Oner, T. Katican, and A. Borumand Saeid, BL-algebras defined by an operator, Honam Math. J. 44 (2022), no. 2, 165–178. DOI: 10.5831/HMJ.2022.44.2.165
  10. T. Oner, T. Katican, A. Borumand Saeid, and M. Terziler, Filters of strong Sheffer stroke non-associative MV-algebras, An. fitiinµ. Univ. “Ovidius” Constanµa Ser. Mat. 29 (2021), no. 1, 143–164. DOI: 10.2478/auom-2021-0010
  11. P.M. Pu and Y.M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), no. 2, 571–599.
  12. H.M. Sheffer, A set of five independent postulates for Boolean algebras, with application to logical constants, Trans. Amer. Math. Soc. 14 (1913), no. 4, 481–488.
DOI: https://doi.org/10.2478/amsil-2023-0010 | Journal eISSN: 2391-4238 | Journal ISSN: 0860-2107
Language: English
Page range: 185 - 203
Submitted on: Dec 16, 2022
Accepted on: Jul 5, 2023
Published on: Jul 26, 2023
Published by: University of Silesia in Katowice, Institute of Mathematics
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Rajab Ali Borzooei, Gholam Reza Rezaei, Young Bae Jun, published by University of Silesia in Katowice, Institute of Mathematics
This work is licensed under the Creative Commons Attribution 4.0 License.